Physics for Scientists and Engineers
10th Edition
ISBN: 9781337553278
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 17P
A simple pendulum makes 120 complete oscillations in 3.00 min at a location where g = 9.80 m/s2. Find (a) the period of the pendulum and (b) its length.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
In an isothermal process, you are told that heat is being added to the system. Which of the following is not true? (a) The pressure of the gas is decreasing. (b) Work is being done on the system. (c) The average kinetic energy of the particles is remaining constant. (d) The volume of the gas is increasing. (e) Work is being done by the system.
No chatgpt pls will upvote
8.114 CALC A Variable-Mass Raindrop. In a rocket-propul-
sion problem the mass is variable. Another such problem is a rain-
drop falling through a cloud of small water droplets. Some of these
small droplets adhere to the raindrop, thereby increasing its mass
as it falls. The force on the raindrop is
dp
dv
dm
Fext
=
+
dt
dt
dt
=
Suppose the mass of the raindrop depends on the distance x that it
has fallen. Then m kx, where k is a constant, and dm/dt = kv.
This gives, since Fext
=
mg,
dv
mg = m
+ v(kv)
dt
Or, dividing by k,
dv
xgx
+ v²
dt
This is a differential equation that has a solution of the form
v = at, where a is the acceleration and is constant. Take the initial
velocity of the raindrop to be zero. (a) Using the proposed solution
for v, find the acceleration a. (b) Find the distance the raindrop has
fallen in t = 3.00 s. (c) Given that k = 2.00 g/m, find the mass of
the raindrop at t = 3.00 s. (For many more intriguing aspects of
this problem, see K. S. Krane, American Journal of…
Chapter 15 Solutions
Physics for Scientists and Engineers
Ch. 15.1 - A block on the end of a spring is pulled to...Ch. 15.2 - Consider a graphical representation (Fig. 15.3) of...Ch. 15.2 - Figure 15.4 shows two curves representing...Ch. 15.2 - An object of mass m is hung from a spring and set...Ch. 15.4 - The ball in Figure 15.13 moves in a circle of...Ch. 15.5 - The grandfather clock in the opening storyline...Ch. 15 - A 0.60-kg block attached to a spring with force...Ch. 15 - A piston in a gasoline engine is in simple...Ch. 15 - The position of a particle is given by the...Ch. 15 - A 7.00-kg object is hung from the bottom end of a...
Ch. 15 - Review. A particle moves along the x axis. It is...Ch. 15 - A ball dropped from a height of 4.00 m makes an...Ch. 15 - A particle moving along the x axis in simple...Ch. 15 - The initial position, velocity, and acceleration...Ch. 15 - You attach an object to the bottom end of a...Ch. 15 - To test the resiliency of its bumper during...Ch. 15 - A particle executes simple harmonic motion with an...Ch. 15 - The amplitude of a system moving in simple...Ch. 15 - A simple harmonic oscillator of amplitude A has a...Ch. 15 - Review. A 65.0-kg bungee jumper steps off a bridge...Ch. 15 - Review. A 0.250-kg block resting on a...Ch. 15 - While driving behind a car traveling at 3.00 m/s,...Ch. 15 - A simple pendulum makes 120 complete oscillations...Ch. 15 - A particle of mass m slides without friction...Ch. 15 - A physical pendulum in the form of a planar object...Ch. 15 - A physical pendulum in the form of a planar object...Ch. 15 - Prob. 21PCh. 15 - Consider the physical pendulum of Figure 15.16....Ch. 15 - A watch balance wheel (Fig. P15.25) has a period...Ch. 15 - Show that the time rate of change of mechanical...Ch. 15 - Show that Equation 15.32 is a solution of Equation...Ch. 15 - As you enter a fine restaurant, you realize that...Ch. 15 - A 2.00-kg object attached to a spring moves...Ch. 15 - Considering an undamped, forced oscillator (b =...Ch. 15 - Prob. 29PCh. 15 - Prob. 30PCh. 15 - An object of mass m moves in simple harmonic...Ch. 15 - Review. This problem extends the reasoning of...Ch. 15 - An object attached to a spring vibrates with...Ch. 15 - Review. A rock rests on a concrete sidewalk. An...Ch. 15 - A pendulum of length L and mass M has a spring of...Ch. 15 - To account for the walking speed of a bipedal or...Ch. 15 - Review. A particle of mass 4.00 kg is attached to...Ch. 15 - People who ride motorcycles and bicycles learn to...Ch. 15 - A ball of mass m is connected to two rubber bands...Ch. 15 - Consider the damped oscillator illustrated in...Ch. 15 - Review. A lobstermans buoy is a solid wooden...Ch. 15 - Your thumb squeaks on a plate you have just...Ch. 15 - Prob. 43APCh. 15 - Prob. 44APCh. 15 - A block of mass m is connected to two springs of...Ch. 15 - Review. A light balloon filled with helium of...Ch. 15 - A particle with a mass of 0.500 kg is attached to...Ch. 15 - A smaller disk of radius r and mass m is attached...Ch. 15 - Review. A system consists of a spring with force...Ch. 15 - Review. Why is the following situation impassible?...Ch. 15 - A light, cubical container of volume a3 is...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Why is it unlikely that two neighboring water molecules would be arranged like this?
Campbell Biology (11th Edition)
What process causes the Mediterranean intermediate Water MIW to become more dense than water in the adjacent At...
Applications and Investigations in Earth Science (9th Edition)
Sea turtles have disappeared from many regions, and one way of trying to save them is to reintroduce them to ar...
MARINE BIOLOGY
Define histology.
Fundamentals of Anatomy & Physiology (11th Edition)
The active ingredient in Tylenol and a host of other over-the-counter pain relievers is acetaminophen (C8H9NO2)...
Chemistry: Atoms First
Describe the evolution of mammals, tracing their synapsid lineage from early amniote ancestors to true mammals....
Loose Leaf For Integrated Principles Of Zoology
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 8.13 A 2.00-kg stone is sliding Figure E8.13 F (kN) to the right on a frictionless hori- zontal surface at 5.00 m/s when it is suddenly struck by an object that exerts a large horizontal force on it for a short period of 2.50 time. The graph in Fig. E8.13 shows the magnitude of this force as a function of time. (a) What impulse does this force exert on t (ms) 15.0 16.0 the stone? (b) Just after the force stops acting, find the magnitude and direction of the stone's velocity if the force acts (i) to the right or (ii) to the left.arrow_forwardPlease calculate the expectation value for E and the uncertainty in E for this wavefunction trapped in a simple harmonic oscillator potentialarrow_forwardIf an object that has a mass of 2m and moves with velocity v to the right collides with another mass of 1m that is moving with velocity v to the left, in which direction will the combined inelastic collision move?arrow_forward
- Please solve this questionarrow_forwardPlease solvearrow_forwardQuestions 68-70 Four hundred millilitres (mL) of a strong brine solution at room temperature was poured into a measuring cylinder (Figure 1). A piece of ice of mass 100 g was then gently placed in the brine solution and allowed to float freely (Figure 2). Changes in the surface level of the liquid in the cylinder were then observed until all the ice had melted. Assume that the densities of water, ice and the brine solution are 1000 kg m-3, 900 kg m3 and 1100 kg m3, respectively. 68 Figure 1 400 400 Figure 2 1m² = 1x10 mL After the ice was placed in the brine solution and before any of it had melted, the level of the brine solution was closest to 485 mL. B 490 mL. C 495 mL. Displaced volume by ice. D 500 mL. weight of ice 69 The level of the brine solution after all the ice had melted was A 490 mL B 495 mL D 1100kg/m² = 909 xious mis 70 Suppose water of the same volume and temperature had been used instead of the brine solution. In this case, by the time all the ice had melted, the…arrow_forward
- No chatgpt plsarrow_forwardNo chatgpt plsarrow_forwardA bowling ball encounters a 0.760-m vertical rise on the way back to the ball rack, as the drawing illustrates. Ignore frictional losses and assume that the mass of the ball is distributed uniformly. The translational speed of the ball is 8.62 m/s at the bottom of the rise. Find the translational speed at the top. Number i 7.70 Units m/s 0.760 marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY