General Chemistry: Atoms First
2nd Edition
ISBN: 9780321809261
Author: John E. McMurry, Robert C. Fay
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 15.61SP
Which of the following gives a buffer solution when equal volumes of the two solutions are mixed?
- (a) 0.10 M NH3 and 0.10 M HCl
- (b) 0.20 M NH3 and 0.10 M HCl
- (c) 0.10 M NH4Cl and 0.10 M NH3
- (d) 0.20 M NH4Cl and 0.10 M NaOH
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Which solution is a buffer?(a) a solution that is 0.100 M in HNO2 and 0.100 M in HCl(b) a solution that is 0.100 M in HNO3 and 0.100 M in NaNO3(c) a solution that is 0.100 M in HNO2 and 0.100 M in NaCl(d) a solution that is 0.100 M in HNO2 and 0.100 M in NaNO2
Calculate the pH change that results when 15 mL of 2.0 M HCI is added to 580. mL of each of the following solutions
(a) pure water
4.0-5.70
(b) 0.10 M CH3COO
4.04.28
(c) 0.10 M CH3COOH
4.0
(d) a solution that is 0.10 M in each CH3COO and CH3COOH.
4.0
Calculate the pH change that results when 15 mL of 2.7 M HCI is added to 600. mL of each of the following solutions. Use the Acid-Base Table.
(a) pure water
4.0 -5.82
(b) 0.10 M CH3COO-
4.0 4.43
(c) 0.10 M CH3COOH
4.0
X
(d) a solution that is 0.10 M in each CH3COO and CH3COOH.
4.0
Chapter 15 Solutions
General Chemistry: Atoms First
Ch. 15.1 - Write balanced net ionic equations for the...Ch. 15.1 - Write balanced net ionic equations for the...Ch. 15.2 - Calculate the concentrations of all species...Ch. 15.2 - Calculate the pH in a solution prepared by...Ch. 15.2 - Prob. 15.5CPCh. 15.3 - The following pictures represent solutions that...Ch. 15.3 - Calculate the pH of 0.100 L of a buffer solution...Ch. 15.3 - Calculate the change in pH when 0.002 mol of HNO3...Ch. 15.4 - Use the HendersonHasselbalch equation to calculate...Ch. 15.4 - Prob. 15.10P
Ch. 15.4 - Suppose you are performing an experiment that...Ch. 15.4 - Prob. 15.12PCh. 15.6 - A 40.0 mL volume of 0.100 M HCl is titrated with...Ch. 15.6 - A 40.0 mL volume of 0.100 M NaOH is titrated with...Ch. 15.7 - The following pictures represent solutions at...Ch. 15.7 - Consider the titration of 100.0 mL of 0.016 M HOCl...Ch. 15.7 - The following acid-base indicators change color in...Ch. 15.9 - Assume that 40.0 mL of 0.0800 M H2SO3 (Ka1 = 1.5 ...Ch. 15.9 - Assume that 40.0 mL of a 0.0250 M solution of the...Ch. 15.10 - Write the equilibrium-constant expression for Ksp...Ch. 15.11 - A saturated solution of Ca3(PO4)2 has [Ca2+] =...Ch. 15.11 - Prob. 15.22PCh. 15.11 - Which has the greater molar solubility: AgCl with...Ch. 15.11 - Prob. 15.24CPCh. 15.12 - Calculate the molar solubility of MgF2 in 0.10 M...Ch. 15.12 - Which of the following compounds are more soluble...Ch. 15.12 - In an excess of NH3(aq), Cu2+ ion forms a deep...Ch. 15.12 - Silver bromide dissolves in aqueous sodium...Ch. 15.13 - Prob. 15.29PCh. 15.13 - Will a precipitate form on mixing 25 mL of 1.0 ...Ch. 15.14 - Prob. 15.31PCh. 15.15 - Prob. 15.32PCh. 15 - The following pictures represent solutions that...Ch. 15 - The following pictures represent solutions that...Ch. 15 - The strong acid HA is mixed with an equal molar...Ch. 15 - The following pictures represent solutions at...Ch. 15 - The following pictures represent solutions at...Ch. 15 - The following pictures represent solutions at...Ch. 15 - Prob. 15.40CPCh. 15 - Prob. 15.41CPCh. 15 - Prob. 15.42CPCh. 15 - Prob. 15.43CPCh. 15 - Is the pH greater than, equal to, or less than 7...Ch. 15 - Prob. 15.45SPCh. 15 - Which of the following mixtures has the higher pH?...Ch. 15 - Which of the following mixtures has the lower pH?...Ch. 15 - Phenol (C6H5OH, Ka = 1.3 1010) is a weak acid...Ch. 15 - Aniline (C6H5NH2, Kb = 4.3 1010) is a weak base...Ch. 15 - The equilibrium constant Kn for the neutralization...Ch. 15 - The equilibrium constant Kn for the neutralization...Ch. 15 - Prob. 15.52SPCh. 15 - Does the pH increase, decrease, or remain the same...Ch. 15 - Prob. 15.54SPCh. 15 - Calculate the pH of a solution prepared by mixing...Ch. 15 - Prob. 15.56SPCh. 15 - The pH of a solution of NH3 and NH4Br is 8.90....Ch. 15 - Prob. 15.58SPCh. 15 - Prob. 15.59SPCh. 15 - Prob. 15.60SPCh. 15 - Which of the following gives a buffer solution...Ch. 15 - Prob. 15.62SPCh. 15 - Prob. 15.63SPCh. 15 - Calculate the pH of a buffer solution that is 0.20...Ch. 15 - Prob. 15.65SPCh. 15 - Calculate the pH of 0.250 L of a 0.36 M formic...Ch. 15 - Calculate the pH of0.375 L of a 0.18 M acetic...Ch. 15 - Prob. 15.68SPCh. 15 - Use the HendersonHasselbalch equation to calculate...Ch. 15 - Prob. 15.70SPCh. 15 - Give a recipe for preparing a CH3CO2HCH3CO2Na...Ch. 15 - Prob. 15.72SPCh. 15 - Prob. 15.73SPCh. 15 - What is the Ka of the amino acid leucine if it is...Ch. 15 - Prob. 15.75SPCh. 15 - Prob. 15.76SPCh. 15 - Make a rough plot of pH versus milliliters of acid...Ch. 15 - Prob. 15.78SPCh. 15 - Consider the titration of 50.0 mL of 0.116 M NaOH...Ch. 15 - Consider the titration of 40.0 mL of 0.250 M HF...Ch. 15 - A 100.0 mL sample of 0.100 M methylamine (CH3NH2,...Ch. 15 - Prob. 15.82SPCh. 15 - Consider the titration of 25.0 mL of 0.0200 M...Ch. 15 - Prob. 15.84SPCh. 15 - The equivalence point was reached in titrations of...Ch. 15 - Prob. 15.86SPCh. 15 - What is the pH at the equivalence point for the...Ch. 15 - Prob. 15.88SPCh. 15 - Prob. 15.89SPCh. 15 - Prob. 15.90SPCh. 15 - Prob. 15.91SPCh. 15 - Prob. 15.92SPCh. 15 - Prob. 15.93SPCh. 15 - Prob. 15.94SPCh. 15 - Prob. 15.95SPCh. 15 - Prob. 15.96SPCh. 15 - Prob. 15.97SPCh. 15 - Use Le Chteliers principle to explain the...Ch. 15 - Use Le Chteliers principle to predict whether the...Ch. 15 - Calculate the molar solubility of PbCrO4 in:...Ch. 15 - Calculate the molar solubility of SrF2 in:...Ch. 15 - Which of the following compounds are more soluble...Ch. 15 - Which of the following compounds are more soluble...Ch. 15 - Prob. 15.104SPCh. 15 - Is the solubility of Fe(OH)3 increased, decreased,...Ch. 15 - Prob. 15.106SPCh. 15 - Prob. 15.107SPCh. 15 - Prob. 15.108SPCh. 15 - Prob. 15.109SPCh. 15 - Calculate the molar solubility of AgI in: (a)Pure...Ch. 15 - Calculate the molar solubility of Cr(OH)3 in 0.50...Ch. 15 - What compound, if any, will precipitate when 80 mL...Ch. 15 - Prob. 15.113SPCh. 15 - Prob. 15.114SPCh. 15 - In qualitative analysis, Al3+ and Mg2+ are...Ch. 15 - Prob. 15.116SPCh. 15 - Can Co2+ be separated from Zn2+ by bubbling H2S...Ch. 15 - Prob. 15.118SPCh. 15 - Prob. 15.119SPCh. 15 - Prob. 15.120SPCh. 15 - Give a method for separating the following pairs...Ch. 15 - Assume that you have three white solids: NaCl,...Ch. 15 - On the same graph, sketch pH titration curves for...Ch. 15 - Prob. 15.124CHPCh. 15 - Prob. 15.125CHPCh. 15 - A saturated solution of Mg(OH)2 in water has pH =...Ch. 15 - Prob. 15.128CHPCh. 15 - In qualitative analysis, Ag+, Hg22+, and Pb2+ are...Ch. 15 - Calculate the molar solubility of MnS in a 0.30 M...Ch. 15 - Prob. 15.131CHPCh. 15 - Prob. 15.132CHPCh. 15 - Prob. 15.133CHPCh. 15 - Prob. 15.134CHPCh. 15 - Prob. 15.135CHPCh. 15 - A 100.0 mL sample of a solution that is 0.100 M in...Ch. 15 - A 0.0100 mol sample of solid Cd(OH)2 (Ksp = 5.3 ...Ch. 15 - Zinc hydroxide, Zn(OH)2 (Ksp = 4.1 1017), is...Ch. 15 - Prob. 15.139CHPCh. 15 - Prob. 15.140MPCh. 15 - Ethylenediamine (NH2CH2CH2NH2, abbreviated en) is...Ch. 15 - A 40.0 mL sample of a mixture of HCl and H3PO4 was...Ch. 15 - A 1.000 L sample of HCl gas at 25 C and 732.0 mm...Ch. 15 - Prob. 15.144MPCh. 15 - Consider the reaction that occurs on mixing 50.0...Ch. 15 - In qualitative analysis, Ca2+ and Ba2+ are...Ch. 15 - A railroad tank car derails and spills 36 tons of...Ch. 15 - Prob. 15.148MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Sketch the titration curve for a weak acid titrated by a strong base. When performing calculations concerning weak acidstrong base titrations, the general two-slep procedure is to solve a stoichiometry problem first, then to solve an equilibrium problem to determine the pH. What reaction takes place in the stoichiometry part of the problem? What is assumed about this reaction? At the various points in your titration curve, list the major species present after the strong base (NaOH, for example) reacts to completion with the weak acid, HA. What equilibrium problem would you solve at the various points in your titration curve to calculate the pH? Why is pH 7.0 at the equivalence point of a weak acid-strong base titration? Does the pH at the halfway point to equivalence have to be less than 7.0? What does the pH at the halfway point equal? Compare and contrast the titration curves for a strong acidstrong base titration and a weak acidstrong base titration.arrow_forwardUsing the diagrams shown in Problem 10-117, which of the solutions would have the greatest buffer capacity, that is, greatest protection against pH change, when the following occurs? a. A strong acid is added to the solution. b. A strong base is added to the solution.arrow_forwardA buffer solution is prepared by adding 5.50 g of ammonium chloride and 0.0188 mol of ammonia to enough water to make 155 mL of solution. (a) What is the pH of the buffer? (b) If enough water is added to double the volume, what is the pH of the solution?arrow_forward
- Calculate the pH change that results when 11 mL of 5.1 M NaOH is added to 790. mL of each the following solutions. Use the Acid-Base Table. (a) pure water 4.0 5.84 (b) 0.10 M NH4CI 4.0 5.43 (c) 0.10 M NH3 4.0✔ X (d) a solution that is 0.10 M in each NH4+ and NH3 4.0✔arrow_forward11. Buffer X contains 8.0 mmol of NH3 and 8.0 mmol of NH. Buffer Y contains 20.0 mmol of NH3 and 20.0 mmol of NH. Which of the following statements is TRUE? (a) Buffer X will have a pH five times more than Buffer Y. (b) Buffer X will have a pH five times less than Buffer Y (c) Buffer X and Buffer Y will have the same pH (d) Buffer X and Buffer Y cannot be compared unless we have the pKa of NHarrow_forwardWhich set of compounds would form a buffer in an aqueous solution? (a) NaCl and KCl (b) NaF and NaOH (c) HBr and NaBr (d) HF and KCN (e) HF and KF (f) HCN and NaCN (g) HCI and HCIO (h) NaF and KFarrow_forward
- If 8.5 g of solid NaC2H3O2 are dissolved in 100.0 mL of water, how many mL of 1.0 M HCl would need to be added to prepare a buffer solution that has pH of 4.60? (a) 40.0 mL (b) 48.0 mL (c) 60.0 mL (d) 75.0 mLarrow_forwardWhich of the following cannot function as a buffer? (a) phosphoric acid, a weak acid (b) sodium hydroxide, a strong base (c) sodium chloride, a salt that ionizes completely (d) a and c (e) b and carrow_forwardCalculate the pH at the following points in a titration of 40.0 mL of 0.100 M barbituric acid(Ka = 9.8 × 10−5) with 0.100 M KOH. (a) no KOH added (b) 20.0 mL of KOH solution added (c)39.0 mL of KOH solution added (d) 40.0 mL of KOH solution added (e) 41.0 mL of KOHSketch an appropriate pH titration curve indicating the buffer region, equivalence point,and excess base region. Why is the pH at the equivalence point not 7.00?arrow_forward
- A buffer is prepared by titrating a 100.0 mL sample of 0.10 M NH3 with 50.0 mL of 0.10 M HNO3. What is the pH of thebuffer?(a) 4.74(b) 7.78(c) 7.05(d) 9.26arrow_forward13. A 60.00 mL sample of 0.075 M sodium benzoate (NaC7H5O2) was titrated with 0.050 M HCl. What is the pH of the solutionafter 10.00 ml of HCl is added?(a) 4.19(b) 5.09(c) 5.74(d) 6.2414. What is the ratio of moles of benzoate (C7H5O2‒) to benzoic acid (HC7H5O2) in the solution that results from thecombination of the NaC7H5O2 and HCl in the problem above?(a) 8(b) 0.125(c) 0.0040(d) 0.00050arrow_forwardCalculate the pH change that results when 12 mL of 5.3 M NaOH is added to 768 mL of each the following solutions. (See the Acid-Base Table attached.) (a) pure water (b) 0.10 M NH4Cl (c) 0.10 M NH3(d) a solution that is 0.10 M in each NH4+ and NH3arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Acid-Base Titration | Acids, Bases & Alkalis | Chemistry | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=yFqx6_Y6c2M;License: Standard YouTube License, CC-BY