Organic Chemistry
4th Edition
ISBN: 9780073402772
Author: Janice G. Smith
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 15.16P
Interpretation Introduction
Interpretation: The propagation steps for the reaction of
Concept introduction: Ozone layer acts as a shield, which protects the earth surface from destructive ultraviolet radiations. Nitric oxide destroys ozone by radical chain mechanism.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Some reactions proceed through a chain mechanism involving radicals, which are highly reactive species with one or more unpaired electrons. The radicals are produced in initiation steps, through either thermal or photodissociation. Reactions in which the radical centre is transferred are called propagation steps. The radicals are lost in termination steps. Consider the following chain mechanism:(1) AH → A + H·(2) A → B· + C(3) AH + B· → A + D(4) A + B· → P(a) Identify the initiation, propagation, and termination steps.(b) Use the steady-state approximation to deduce that the decompositionof AH is f irst-order in AH.
Deduce possible reactions steps (no photolysis) for Mechanism II following X + 03 → XO + O₂
step such that the sum of all mechanism steps does not destroy or create any ozone.
7. How fast is the oxidation of SO₂, in percent per
hour, in the gas phase for an OH concentration of
1 × 107 radicals cm-³, a typical peak concentration in
the lower troposphere? Comment on the significance of
your calculated rate in light of observed rates of SO₂
oxidation of up to 30% h-¹ in the troposphere.
Chapter 15 Solutions
Organic Chemistry
Ch. 15 - Prob. 15.1PCh. 15 - Prob. 15.2PCh. 15 - Draw the product formed when a chlorine atom (Cl)...Ch. 15 - Prob. 15.4PCh. 15 - Prob. 15.5PCh. 15 - Problem 15.6 Using mechanism 15.1 as guide, write...Ch. 15 - Calculate m0 for the two propagation steps in the...Ch. 15 - Prob. 15.8PCh. 15 - Problem 15.8 Which bond in the each compound is...Ch. 15 - Prob. 15.10P
Ch. 15 - Prob. 15.11PCh. 15 - Synthesize each compound from (CH3)3CH. a....Ch. 15 - Prob. 15.13PCh. 15 - Prob. 15.14PCh. 15 - Prob. 15.15PCh. 15 - Prob. 15.16PCh. 15 - Prob. 15.17PCh. 15 - Prob. 15.18PCh. 15 - Draw all constitutional isomers formed when each...Ch. 15 - Draw the structure of the four allylic halides...Ch. 15 - Which compounds can be prepared in good yield by...Ch. 15 - Which CH bond is most readily cleaved in linolenic...Ch. 15 - Prob. 15.23PCh. 15 - Draw the products formed when each alkene is...Ch. 15 - Problem 15.24 When adds to under radical...Ch. 15 - Prob. 15.26PCh. 15 - Draw an energy diagram for the two propagation...Ch. 15 - Prob. 15.28PCh. 15 - Problem 15.27 Draw the steps of the mechanism that...Ch. 15 - Prob. 15.30PCh. 15 - Prob. 15.31PCh. 15 - Prob. 15.32PCh. 15 - Prob. 15.33PCh. 15 - Why is a benzylic CH bond labeled in red unusually...Ch. 15 - Prob. 15.35PCh. 15 - Prob. 15.36PCh. 15 - Prob. 15.37PCh. 15 - Prob. 15.38PCh. 15 - What alkane is needed to make each alkyl halide by...Ch. 15 - Which alkyl halides can be prepared in good yield...Ch. 15 - Prob. 15.41PCh. 15 - 15.40 Explain why radical bromination of p-xylene...Ch. 15 - a. What product(s) (excluding stereoisomers) are...Ch. 15 - Prob. 15.44PCh. 15 - Prob. 15.45PCh. 15 - Prob. 15.46PCh. 15 - 15.44 Draw all constitutional isomers formed when...Ch. 15 - Draw the organic products formed in each reaction....Ch. 15 - Prob. 15.49PCh. 15 - 15.47 Treatment of a hydrocarbon A (molecular...Ch. 15 - Prob. 15.51PCh. 15 - Prob. 15.52PCh. 15 - Prob. 15.53PCh. 15 - Prob. 15.54PCh. 15 - 15.53 Consider the following bromination: .
a....Ch. 15 - 15.54 Draw a stepwise mechanism for the following...Ch. 15 - Prob. 15.57PCh. 15 - An alternative mechanism for the propagation steps...Ch. 15 - Prob. 15.59PCh. 15 - Prob. 15.60PCh. 15 - Devise a synthesis of each compound from...Ch. 15 - Devise a synthesis of each target compound from...Ch. 15 - Devisea synthesis of each target compound from the...Ch. 15 - Devise a synthesis of each compound using CH3CH3...Ch. 15 - Prob. 15.65PCh. 15 - 15.63 As described in Section 9.16, the...Ch. 15 - 15.64 Ethers are oxidized with to form...Ch. 15 - Prob. 15.68PCh. 15 - Prob. 15.69PCh. 15 - 15.67 In cells, vitamin C exists largely as its...Ch. 15 - What monomer is needed to form each...Ch. 15 - Prob. 15.72PCh. 15 - Prob. 15.73PCh. 15 - 15.71 Draw a stepwise mechanism for the following...Ch. 15 - 15.72 As we will learn in Chapter 30, styrene...Ch. 15 - Prob. 15.76PCh. 15 - 15.74 A and B, isomers of molecular formula , are...Ch. 15 - Prob. 15.78PCh. 15 - Radical chlorination of CH3CH3 forms two minor...Ch. 15 - 15.76 Draw a stepwise mechanism for the...Ch. 15 - Prob. 15.81PCh. 15 - Prob. 15.82PCh. 15 - Prob. 15.83P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Ozone in the troposphere is formed by the following steps: NO2 → NO + O (1) 0 + 02 → 03 (2) The first step is initiated by the absorption of visible light (NO, is a brown gas). Calculate the longest wavelength required for step 1 at 25°C. nmarrow_forwardIs Mechanism I or Mechanism II of ozone destruction considered responsible for the ozone hole over the South Pole? O Mechanism II O Mechanism Iarrow_forwardExplain the role of chemical kinetics in the formation and destruction of ozone in the atmosphere.arrow_forward
- The 1995 Nobel Prize in Chemistry was shared by Paul Crutzen, F. Sherwood Rowland, and Mario Molina for their work concerning the formation and decomposition of ozone in the stratosphere. Rowland and Molina hypothesized that chlorofluorocarbons (CFCS) in the stratosphere break down upon exposure to UV radiation, producing chlorine atoms. Chlorine was previously identified as a catalyst in the breakdown of ozone into oxygen gas. Using the enthalpy of reaction for two reactions with ozone, determine the enthalpy of reaction for the reaction of chlorine with ozone. (1) CIO(g) + 0,(g) → Cl(g) + 20,(g) AH;xn = –122.8 kJ (2) 20,(g) → 30,(g) 0,(g)+Cl(g) → CIO(g) + 0,(g) AHn = -285.3 kJ (3) AĦxn = ? AHixn = kJarrow_forwardThe 1995 Nobel Prize in Chemistry was shared by Paul Crutzen, F. Sherwood Rowland, and Mario Molina for their work concerning the formation and decomposition of ozone in the stratosphere. Rowland and Molina hypothesized that chlorofluorocarbons (CFCs) in the stratosphere break down upon exposure to UV radiation, producing chlorine atoms. Chlorine was previously identified as a catalyst in the breakdown of ozone into oxygen gas. Using the enthalpy of reaction for two reactions with ozone, determine the enthalpy of reaction for the reaction of chlorine with ozone. (1) C10(g) + O₂(g) → Cl(g) +20₂(g) AH (2) 20,(g) →30₂(g) (3) 0₂(g) + Cl(g) → CIO(g) + O₂(g) Allis= = -122.8 kJ AH = -285.3 kJ AHin = ? kJarrow_forwardThe 1995 Nobel Prize in Chemistry was shared by Paul Crutzen, F. Sherwood Rowland, and Mario Molina for their work concerning the formation and decomposition of ozone in the stratosphere. Rowland and Molina hypothesized that chlorofluorocarbons (CFCs) in the stratosphere break down upon exposure to UV radiation, producing chlorine atoms. Chlorine was previously identified as a catalyst in the breakdown of ozone into oxygen gas. Using the enthalpy of reaction for two reactions with ozone, determine the enthalpy of reaction for the reaction of chlorine with ozone. CIO(g) + O3(g) -> Cl(g) +202(g) AHxn = -122.8 kJ (1) (2) 203(g) - - 302(g) AHxn=-285.3 kJ (3) 03(g) + Cl(g) - CIO(g) + O2(g) AHixn= ? AHixn= kJarrow_forward
- The 1995 Nobel Prize in Chemistry was shared by Paul Crutzen, F. Sherwood Rowland, and Mario Molina for their work concerning the formation and decomposition of ozone in the stratosphere. Rowland and Molina hypothesized that chlorofluorocarbons (CFCs) in the stratosphere break down upon exposure to UV radiation, producing chlorine atoms. Chlorine was previously identified as a catalyst in the breakdown of ozone into oxygen gas. Using the enthalpy of reaction for two reactions with ozone, determine the enthalpy of reaction for the reaction of chlorine with ozone. (1)ClO(g)+O3(g)⟶Cl(g)+2O2(g)Δ?∘rxn=−122.8 kJ (2)2O3(g)⟶3O2(g)Δ?∘rxn=−285.3 kJ (3)O3(g)+Cl(g)⟶ClO(g)+O2(g) Δ?∘rxn= ?arrow_forwardThe 1995 Nobel Prize in Chemistry was shared by Paul Crutzen, F. Sherwood Rowland, and Mario Molina for their work concerning the formation and decomposition of ozone in the stratosphere. Rowland and Molina hypothesized that chlorofluorocarbons (CFCs) in the stratosphere break down upon exposure to UV radiation, producing chlorine atoms. Chlorine was previously identified as a catalyst in the breakdown of ozone into oxygen gas. Using the enthalpy of reaction for two reactions with ozone, determine the enthalpy of reaction for the reaction of chlorine with ozone. (1)ClO(g)+O3(g)⟶Cl(g)+2O2(g)Δ?∘rxn=−122.8 kJ(2)2O3(g)⟶3O2(g)Δ?∘rxn=−285.3 kJ(3)O3(g)+Cl(g)⟶ClO(g)+O2(g) Δ?∘rxn= ?(1)ClO(g)+O3(g)⟶Cl(g)+2O2(g)ΔHrxn°=−122.8 kJ(2)2O3(g)⟶3O2(g)ΔHrxn°=−285.3 kJ(3)O3(g)+Cl(g)⟶ClO(g)+O2(g) ΔHrxn°= ? Δ?∘rxn=ΔHrxn°=arrow_forwardThe 1995 Nobel Prize in Chemistry was shared by Paul Crutzen, F. Sherwood Rowland, and Mario Molina for their work concerning the formation and decomposition of ozone in the stratosphere. Rowland and Molina hypothesized that chlorofluorocarbons (CFCs) in the stratosphere break down upon exposure to UV radiation, producing chlorine atoms. Chlorine was previously identified as a catalyst in the breakdown of ozone into oxygen gas. Using the enthalpy of reaction for two reactions with ozone, determine the enthalpy of reaction for the reaction of chlorine with ozone. (1)ClO(g)+O3(g)⟶Cl(g)+2O2(g)ΔH∘rxn=−122.8 kJ(2)2O3(g)⟶3O2(g)ΔH∘rxn=−285.3 kJ(3)O3(g)+Cl(g)⟶ClO(g)+O2(g) ΔH∘rxn= ?(1)ClO(g)+O3(g)⟶Cl(g)+2O2(g)ΔHrxn°=−122.8 kJ(2)2O3(g)⟶3O2(g)ΔHrxn°=−285.3 kJ(3)O3(g)+Cl(g)⟶ClO(g)+O2(g) ΔHrxn°= ? ΔH∘rxn=ΔHrxn°=__________________________________________kJarrow_forward
- The 1995 Nobel Prize in Chemistry was shared by Paul Crutzen, F. Sherwood Rowland, and Mario Molina for their work concerning the formation and decomposition of ozone in the stratosphere. Rowland and Molina hypothesized that chlorofluorocarbons (CFCS) in the stratosphere break down upon exposure to UV radiation, producing chlorine atoms. Chlorine was previously identified as a catalyst in the breakdown of ozone into oxygen gas. Using the enthalpy of reaction for two reactions with ozone, determine the enthalpy of reaction for the reaction of chlorine with ozone. (1) CIO(g) + 0;(g) Cl(g) + 20,(g) AHxn = -122.8 kJ AHan = -285.3 kJ (2) 203(g) → 30,(g) (3) 0,(g) + Cl(g) → CIO(g) + 0,(g) AHn = ?arrow_forwardThe 1995 Nobel Prize in Chemistry was shared by Paul Crutzen, F. Sherwood Rowland, and Mario Molina for their work concerning the formation and decomposition of ozone in the stratosphere. Rowland and Molina hypothesized that chlorofluorocarbons (CFCS) in the stratosphere break down upon exposure to UV radiation, producing chlorine atoms. Chlorine was previously identified as a catalyst in the breakdown of ozone into oxygen gas. Using the enthalpy of reaction for two reactions with ozone, determine the enthalpy of reaction for the reaction of chlorine with ozone. (1) C10(g) + 0,(g) - (2) 20;(g) (3) 0,(g) + Cl(g) → ClO(g) + 0, (g) Cl(g) + 2 0,(g) AH³xn -122.8 kJ > = → 30,(g) AHixn = -285.3 kJ → ClO(g) + 0,(g) AHixn = ? kJ rxnarrow_forwardThe molecule, OH (g), is a free radical known as the "detergent" molecule of the atmosphere. The molecule, OH (g), is a free radical known as the "detergent" molecule of the atmosphere. La molécule, OH (g), est un radical libre connu sous le nom de molécule « détergente » de l'atmosphère. The molecule, OH (g), is a free radical called the “detergent” molecule of the atmosphere. La molécule OH (g) est un radical libre appelé molécule « détergente » de l'atmosphère. It reacts with many hydrocarbons or other molecules that enter the atmosphere to oxidize them into forms that can be removed from the atmosphere. It is present in very low concentrations at all times in the atmosphere, so the thermodynamics of its production is difficult to measure directly. To. Considering the enthalpy of the following reactions, determine the ΔH of the reaction: b) In which of the reactions listed (1 - 4) would ΔH be an enthalpy of formation, ΔfH °, and in which ΔH would be defined as ΔHdissociation (also…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Photochemistry : Introduction to Basic Theory of Photochemical Process [Part 1]; Author: Dr. Vikrant Palekar;https://www.youtube.com/watch?v=2NDOL11d6no;License: Standard YouTube License, CC-BY
Photochemistry-1; Author: CH-08:ARYABHATT [Mathematics, Physics, Chemistry];https://www.youtube.com/watch?v=DC4J0t1z3e8;License: Standard Youtube License