Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14.1, Problem 14.1QQ
To determine
The effect of overlapping of two symmetric pulses
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two pulses move in opposite directions on a string and are identical in shape and size except that one has positive displacements of the elements of the string and the other has negative displacements. At the moment the two pulses completely overlap on the string, what happens? (a) The energyassociated with the pulses has disappeared. (b) The string is not moving. (c) The string forms a straight line. (d) The pulses have vanished and will not reappear.
Two pulses move in opposite directions on a string and are identical in shape except that one has positive displacements of the elements of the string and the other has negative displacements. Which of the following is true at the moment that the two pulses completely overlap on the string?
The string is not moving.The string forms a straight line. The pulses have vanished and will not reappear.The energy associated with the pulses has disappeared.
just part (d) please
Chapter 14 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 14.1 - Prob. 14.1QQCh. 14.2 - Prob. 14.2QQCh. 14.3 - When a standing wave is set up on a string fixed...Ch. 14.4 - Prob. 14.4QQCh. 14.4 - Prob. 14.5QQCh. 14.5 - You are tuning a guitar by comparing the sound of...Ch. 14 - A flute has a length of 58.0 cm. If the speed of...Ch. 14 - Prob. 2OQCh. 14 - In Figure OQ14.3, a sound wave of wavelength 0.8 m...Ch. 14 - Prob. 4OQ
Ch. 14 - Prob. 5OQCh. 14 - Prob. 6OQCh. 14 - Prob. 7OQCh. 14 - Prob. 8OQCh. 14 - Prob. 9OQCh. 14 - Prob. 10OQCh. 14 - A standing wave having three nodes is set up in a...Ch. 14 - Prob. 1CQCh. 14 - Prob. 2CQCh. 14 - Prob. 3CQCh. 14 - Prob. 4CQCh. 14 - What limits the amplitude of motion of a real...Ch. 14 - Prob. 6CQCh. 14 - Prob. 7CQCh. 14 - Prob. 8CQCh. 14 - Prob. 1PCh. 14 - Prob. 2PCh. 14 - Prob. 3PCh. 14 - Prob. 4PCh. 14 - Prob. 5PCh. 14 - Prob. 6PCh. 14 - Prob. 7PCh. 14 - Prob. 8PCh. 14 - Prob. 9PCh. 14 - Prob. 10PCh. 14 - Prob. 11PCh. 14 - Prob. 12PCh. 14 - Prob. 13PCh. 14 - Prob. 14PCh. 14 - Prob. 15PCh. 14 - Prob. 16PCh. 14 - Prob. 17PCh. 14 - Prob. 18PCh. 14 - Prob. 19PCh. 14 - Prob. 20PCh. 14 - A string with a mass m = 8.00 g and a length L =...Ch. 14 - Prob. 22PCh. 14 - Prob. 23PCh. 14 - Prob. 24PCh. 14 - Prob. 25PCh. 14 - Review. A sphere of mass M is supported by a...Ch. 14 - Prob. 27PCh. 14 - Prob. 28PCh. 14 - Prob. 29PCh. 14 - Prob. 30PCh. 14 - Prob. 31PCh. 14 - The overall length of a piccolo is 32.0 cm. The...Ch. 14 - Prob. 33PCh. 14 - Prob. 34PCh. 14 - Two adjacent natural frequencies of an organ pipe...Ch. 14 - Do not stick anything into your ear! Estimate the...Ch. 14 - Prob. 37PCh. 14 - As shown in Figure P14.37, water is pumped into a...Ch. 14 - Prob. 39PCh. 14 - Prob. 40PCh. 14 - Prob. 41PCh. 14 - Why is the following situation impossible? A...Ch. 14 - 23. An air column in a glass tube is open at one...Ch. 14 - Prob. 44PCh. 14 - Prob. 45PCh. 14 - Prob. 46PCh. 14 - Prob. 47PCh. 14 - Prob. 48PCh. 14 - Some studies suggest that the upper frequency...Ch. 14 - Prob. 50PCh. 14 - An earthquake can produce a seiche in a lake in...Ch. 14 - Prob. 52PCh. 14 - Prob. 53PCh. 14 - Prob. 54PCh. 14 - Prob. 55PCh. 14 - A nylon string has mass 5.50 g and length L = 86.0...Ch. 14 - Prob. 57PCh. 14 - Prob. 58PCh. 14 - Prob. 59PCh. 14 - Review. For the arrangement shown in Figure...Ch. 14 - Prob. 61PCh. 14 - Prob. 62PCh. 14 - Prob. 63PCh. 14 - Prob. 64PCh. 14 - Prob. 65PCh. 14 - Prob. 66PCh. 14 - Prob. 67PCh. 14 - Review. Consider the apparatus shown in Figure...Ch. 14 - Prob. 69P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A wave on a string is driven by a string vibrator, which oscillates at a frequency of 100.00 Hz and an amplitude of 1.00 cm. The string vibrator operates at a voltage of 12.00 V and a current of 0.20 A. The power consumed by the string vibrator is P=IV . Assume that the string vibrator is 90% efficient at converting electrical energy into the energy associated with the vibrations of the string. The string is 3.00 m long, and is under a tension of 60.00 N. What is the linear mass density of the string?arrow_forwardA sinusoidal wave on a string travels to the right. The wave has the following characteristics: wavelength = 2.05 m, amplitude = 0.100 m, and speed = 1.25 m/s. Assume that at t = 0, the left end of the string is at the origin and its transverse velocity is negative. (d) Find the wave function for this wave in SI units. (Use the following as necessary: x and t. Assume x and y are in meters and t is in seconds. Do not include units in your answer.) (e) Determine the equation of motion in SI units for the left end of the string. (Use the following as necessary: t. Assume y is in meters and t is in seconds. Do not include units in your answer.) (f) Determine the equation of motion in SI units for the point on the string at x = 1.40 m to the right of the left end. (Use the following as necessary: t. Assume y is in meters and t is in seconds. Do not include units in your answer.)arrow_forwardThe amplitudes and phase differences for four pairs of waves of equal wavelengths are (a) 2 mm, 6 mm, and p rad; (b) 3 mm, 5 mm, and p rad; (c) 7 mm, 9 mm, and p rad; (d) 2 mm, 2 mm, and 0 rad. Each pair travels in the same direction along the same string. Without written calculation, rank the four pairs according to the amplitude of their resultant wave, greatest first. (Hint: Construct phasor diagrams.)arrow_forward
- Consider a loop in the standing wave created by two waves (amplitude 5.00 mm and frequency 120 Hz) traveling in opposite directions along a string with length 2.25 m and mass 125 g and under tension 40 N. At what rate does energy enter the loop from (a) each side and (b) both sides? (c) What is the maximum kinetic energy of the string in the loop during its oscillation?arrow_forwardMacmillan Learning A school is setting up for the science department's annual "Night of Phantastic Physics Phun." One of the most popular demonstrations is the traveling wave pulse, in which participants pluck one end of a long, taut wire to send transverse wave pulses racing across the room. The goal is for the pulses to travel across the 18.5 m wire in a time of about 0.500 s. The mass of a 1 m long piece of the wire is known to be 0.475 kg. What should the tension in the wire be in order to achieve the desired wave speed? tension: Narrow_forward(d)v = 2ghmax A wave traveling on a string has the following wave function, y(x, t) = Asin(kx + wt + p). At time t = 0, the point x 0 has a displacement of y(0,0) = 0, and is moving in the negative y -direction. Which of the following is true about the phase constant and the wave speed direction? (a) o = "/2, and the wave is moving in the negative x-direction. (b)y = "2, and the wave is moving in the positive x-direction. (c) o = n and the wave is moving in the negative x-direction. (d)g = n and the wave is moving in the positive x-direction. 11) %3D %3D %3D %3D Y (90) = Aswyz) =0 or %3D Ao las(4)arrow_forwardA 2.40-m wire has a mass of 7.50 g and is under a tension of 160 N. The wire is held rigidly at both ends and set into oscillation. (a) What is the speed of waves on the wire? The string is driven into resonance by a frequency that produces a standing wave with a wavelength equal to 1.20 m. (b) What is the frequency used to drive the string into resonance?arrow_forwardA string oscillates according to the equation y' = (0.367 cm) sin[(n/5.0 cm-1)x] cos[(45.2 ns)t]. What are the (a) amplitude and (b) speed of the two waves (identical except for direction of travel) whose superposition gives this oscillation? (c) What is the distance between nodes? (d) What is the transverse speed of a particle of the string at the position x = 2.20 cm when t = 1.06 s? (a) Number Units cm (b) Number [226 Units cm/s Unit cm (c) Number (d) Number Unitsarrow_forwardConsider a transverse periodic (sinusoidal) wave passing through a very long string of mass density 0.250 kg/m. The wave function for this wave is found to be: y (x,t) = (0.125 m) cos [(1.10 rad/m) x - (15.0 rad/s) t] From the equation find the following quantities 1. Direction of th oscillation of the medium (i.e. which axis) 2. Direction of the motion of the wave (i.e. which axis, and ij the positive or negative direction) 3. Speed of the wave 4. Tension of the string 5. Average power P av delivered by the wavearrow_forwardA long, tight spring is held by two students, one student holding each end. Each student gives the end a flip sending one wavelength of a sinusoidal wave down the spring in opposite directions. When the waves meet in the middle, what does the wave look like?arrow_forwardTwo children stretch a jump rope between them and send wave pulses back and forth on it. The rope is 2.9 m long, its mass is 0.62 kg, and the force exerted on it by the children is 37 N. (a) What is the linear mass density of the rope (in kg/m)? kg/m (b) What is the speed of the waves on the rope (in m/s)? m/sarrow_forwardA taut rope is tied to a machine that causes it to oscillate sinusoidally. You take a picture of the rope and see that at that moment there are four complete cycles along 10m. If the oscillator frequency is 20HZ, find: a) The wave number b) The angular frequency c) If at time t = Os, the height of the wave is Om when x = 0m, find the phase shift of the oscillation. d) If at time t = Os, the transverse velocity is 250m / s when x = Om, find the amplitude of the oscillation. e) Write the wave function that describes the behavior of this wave.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University