Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14, Problem 47P
To determine
The harmonics showing near equality
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A violin string ? = 31.6 cm long and ? = 0.65 g⁄m linear mass density is tuned to play a La4 note at 440.0 Hz. This means that the string is at its fundamental oscillation mode, that is, you will be on that note without placing a finger on it. From this information:
B. If the midpoint of the chord is displaced 1.80 mm transversely when found in the fundamental mode, what is the maximum speed ??á? of the midpoint of string?
A violin string of length L=31.8 cm and linear mass density u=0.64gm/is tuned to play an A4 note
at 440.0 Hz. This means that the string is in its mode of oscillation fundamental, that is, it will be
on that note without placing any fingers on it. From this information,
D. When playing the violin, different notes can be produced depending on the position of the
fingers of one hand on the string. The usual technique presses the string hard against the
fretboard, reducing the length of the string that can vibrate. If we consider this string
initially tuned for an A4, and a finger is placed a third of the way down from the
headstock:
What would be the new fundamental frequency, that is, the frequency of the new
note that is being produced assuming it has the same tension as in part A?
ii.
i.
What would be the new frequency of the note, if instead of using the technique
described above for violin playing, the technique called artificial harmonic is used,
where the string is only partially…
The lowest note on a piano (the first harmonic vibration) is the "A" note with frequency 27.5 Hz. A 2.00 m long section of the string has mass 428 grams. The vibrating section of the string is 1.96 m long. The tension required to tune the string properly is
The frequency of the tenth harmonic vibration of the string is
he wavelength of the tenth harmonic vibration of the string is
he wavelength of the tenth harmonic vibration of the string is
Chapter 14 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 14.1 - Prob. 14.1QQCh. 14.2 - Prob. 14.2QQCh. 14.3 - When a standing wave is set up on a string fixed...Ch. 14.4 - Prob. 14.4QQCh. 14.4 - Prob. 14.5QQCh. 14.5 - You are tuning a guitar by comparing the sound of...Ch. 14 - A flute has a length of 58.0 cm. If the speed of...Ch. 14 - Prob. 2OQCh. 14 - In Figure OQ14.3, a sound wave of wavelength 0.8 m...Ch. 14 - Prob. 4OQ
Ch. 14 - Prob. 5OQCh. 14 - Prob. 6OQCh. 14 - Prob. 7OQCh. 14 - Prob. 8OQCh. 14 - Prob. 9OQCh. 14 - Prob. 10OQCh. 14 - A standing wave having three nodes is set up in a...Ch. 14 - Prob. 1CQCh. 14 - Prob. 2CQCh. 14 - Prob. 3CQCh. 14 - Prob. 4CQCh. 14 - What limits the amplitude of motion of a real...Ch. 14 - Prob. 6CQCh. 14 - Prob. 7CQCh. 14 - Prob. 8CQCh. 14 - Prob. 1PCh. 14 - Prob. 2PCh. 14 - Prob. 3PCh. 14 - Prob. 4PCh. 14 - Prob. 5PCh. 14 - Prob. 6PCh. 14 - Prob. 7PCh. 14 - Prob. 8PCh. 14 - Prob. 9PCh. 14 - Prob. 10PCh. 14 - Prob. 11PCh. 14 - Prob. 12PCh. 14 - Prob. 13PCh. 14 - Prob. 14PCh. 14 - Prob. 15PCh. 14 - Prob. 16PCh. 14 - Prob. 17PCh. 14 - Prob. 18PCh. 14 - Prob. 19PCh. 14 - Prob. 20PCh. 14 - A string with a mass m = 8.00 g and a length L =...Ch. 14 - Prob. 22PCh. 14 - Prob. 23PCh. 14 - Prob. 24PCh. 14 - Prob. 25PCh. 14 - Review. A sphere of mass M is supported by a...Ch. 14 - Prob. 27PCh. 14 - Prob. 28PCh. 14 - Prob. 29PCh. 14 - Prob. 30PCh. 14 - Prob. 31PCh. 14 - The overall length of a piccolo is 32.0 cm. The...Ch. 14 - Prob. 33PCh. 14 - Prob. 34PCh. 14 - Two adjacent natural frequencies of an organ pipe...Ch. 14 - Do not stick anything into your ear! Estimate the...Ch. 14 - Prob. 37PCh. 14 - As shown in Figure P14.37, water is pumped into a...Ch. 14 - Prob. 39PCh. 14 - Prob. 40PCh. 14 - Prob. 41PCh. 14 - Why is the following situation impossible? A...Ch. 14 - 23. An air column in a glass tube is open at one...Ch. 14 - Prob. 44PCh. 14 - Prob. 45PCh. 14 - Prob. 46PCh. 14 - Prob. 47PCh. 14 - Prob. 48PCh. 14 - Some studies suggest that the upper frequency...Ch. 14 - Prob. 50PCh. 14 - An earthquake can produce a seiche in a lake in...Ch. 14 - Prob. 52PCh. 14 - Prob. 53PCh. 14 - Prob. 54PCh. 14 - Prob. 55PCh. 14 - A nylon string has mass 5.50 g and length L = 86.0...Ch. 14 - Prob. 57PCh. 14 - Prob. 58PCh. 14 - Prob. 59PCh. 14 - Review. For the arrangement shown in Figure...Ch. 14 - Prob. 61PCh. 14 - Prob. 62PCh. 14 - Prob. 63PCh. 14 - Prob. 64PCh. 14 - Prob. 65PCh. 14 - Prob. 66PCh. 14 - Prob. 67PCh. 14 - Review. Consider the apparatus shown in Figure...Ch. 14 - Prob. 69P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The C major musical scale has notes C D E F G A B C in order. Select the answers that apply. There are half steps between E and F and between B and C. There are no half steps. The frequencies are uniformly spaced. The scale spans a factor of 2 in frequency. Every note is separated from the one before it by a half step.arrow_forwardA periodic, standing wave exists on a string of length L=2.73m. If a particular wave is measured to have a wave velocity of v=45.86 m/s, what is the frequency (in Hz) of the n=3 vibrational mode?arrow_forwardJust need to be shown parts (a) and (b) Problem 12: A guitar string of length L = 0.99 m is oriented along the x-direction and under a tension of T = 118 N. The string is made of steel which has a density of ρ = 7800 kg / m3. The radius of the string is r = 9.4 x 10-4 m. A transverse wave of amplitude A = 0.0020 m is formed on the string. Part (a) Calculate the mass per unit length μ of the guitar string in kg / m. Part (b) Calculate the velocity (in m/s) of a traveling transverse wave on the guitar string. Part (c) Assume a form y1 = A sin(α) for the transverse displacement of the string. Enter an expression for α of a transverse wave on a string traveling along the positive x-direction in terms of its wavenumber k, the position x, its angular frequency ω, and the time t? α = k x - ω t ✔ Correct! Part (d) Assume a form y2 = A sin(α) for the transverse displacement of the string. Write an expression for α of a transverse wave on a string traveling along the…arrow_forward
- The A string on a violin has a fundamental frequency of 430Hz. The length of the vibrating portion of the string is 35cm and has a mass of 0.35 g. Under what tension must the string be placed to obtain the desired frequency?arrow_forwardA transverse wave with a frequency of 827 Hz ,6.00 m wavelength, and 6.00 mm amplitude is propagating on a 7.00 m, taught wire. If the mass of the wire is 43.00 g, how much time in seconds does it take for a crest of this wave to travel the length of the wire? Please give your answer with two decimal places.arrow_forwardProblem 9: A guitar with strings of length L = 0.64 m has new strings put on it. The low E string has a linear density of p = 0.0051 kg/m and when tuned properly should produce a fundamental tone of v = 82.41 Hz. Randomized Variables L = 0.64 m p = 0.0051 kg/m Part (a) What is the proper tension the string should be under, in Newtons? Numeric : Anumeric value is expected and not an expression. T = Part (b) If the string was mistakenly tuned to high E (v = 330 Hz) what would the tension be, in Newtons? (Note that in reality, the string would likely break!) Numeric : A numeric value is expected and not an expression. T =arrow_forward
- Suppose the strings on a violin are stretched with the same tension and each has the same length between its two fixed ends. The musical notes and corresponding fundamental frequencies of these two strings are G (196.0 Hz) and E (659.3 Hz). The linear density of the E string is 2.81E-4 kg/m. What is the linear density of the G string?arrow_forwardA music artist buys a new guitar. The string he buys for the guitar is .6m long. The tension when he begins to pluck the strings is 70 newtons and mass/per unit of length is .003 kg/m. Answer the following: A) wave speed? (when plucked) B) fundamental frequency of the plucked strings vibration? C) 2nd harmonic frequency?arrow_forwardf = v/2L fn = n (v / 2L) The first harmonic frequency of a violin string is 440 Hz. a. Find the next 3 harmonic frequencies (overtones) of this string. [up to 4th harmonic]arrow_forward
- Need help with part E plsssarrow_forwardYou are continuing to investigate the sounds that you can make from your roommate's guitar, as described in the opening storyline. You decide to take some data. One particular string is of length 62.1 cm and plays a note with a fundamental frequency of 247 Hz when it is allowed to vibrate freely along its entire length. You now press the string down strongly against a fret that is located 20.7 cm from the end of the string by the tuning pins. You pluck the string and use a smartphone app to measure the fundamental frequency frret Of the sound. Next, you touch your finger lightly at the same position as before, a technique that will result in the string playing what guitarists call a "harmonic." You pluck the string and use the smartphone app to measure the frequency frouch of the sound. What are the frequencies fret and frouch (in Hz)? ffret Hz %3D frouch Hzarrow_forwardA string with a mass density mu = 6.40e-03 kg/m is under a tension of F = 259 N and is fixed at both ends. One of its resonance frequencies is 622.0 Hz. The next higher resonance frequency is 777.5 Hz. What is the fundamental frequency of this string? Which harmonic does the resonance frequency at 622.0 Hz correspond to? (i.e. what is n at this frequency?) What is the length of the string? Now, suppose the same string is detached at one end and connected by a ring to a frictionless post, so that it can move freely. Find the wavelength of the first (fundamental) harmonic. What is the frequency of the third (n = 3) harmonic in this case?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Wave Speed on a String - Tension Force, Intensity, Power, Amplitude, Frequency - Inverse Square Law; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=vEzftaDL7fM;License: Standard YouTube License, CC-BY
Vibrations of Stretched String; Author: PhysicsPlus;https://www.youtube.com/watch?v=BgINQpfqJ04;License: Standard Youtube License