Foundations of Astronomy (MindTap Course List)
14th Edition
ISBN: 9781337399920
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14, Problem 2P
To determine
The radius of the given white dwarf.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
what is the answer for sub-item (b) if the radius of the neutron star is 6.676 km? (express your answer in the proper SI unit and without scientific notation)
(b)What is the average density of a neuron star that has the same mass as the sun but a radius of only 20.0 km?
What is the average density of a neutron star that has the same mass as the sun but a radius of only 86.31 km? Express your answer in the proper SI unit and without scientific notation.
The mass of a star is 1.99·1031 kg and its angular velocity is 1.60E-7 rad/s. Find its new angular velocity if the diameter suddenly shrinks to 0.27 times its present size. Assume a uniform mass distribution before and after. Icm for a solid sphere of uniform density is 2/5 mr2.
Chapter 14 Solutions
Foundations of Astronomy (MindTap Course List)
Ch. 14 - Prob. 1RQCh. 14 - Prob. 2RQCh. 14 - Prob. 3RQCh. 14 - Prob. 4RQCh. 14 - Prob. 5RQCh. 14 - Prob. 6RQCh. 14 - Prob. 7RQCh. 14 - Prob. 8RQCh. 14 - Prob. 9RQCh. 14 - Prob. 10RQ
Ch. 14 - Prob. 11RQCh. 14 - Prob. 12RQCh. 14 - Prob. 13RQCh. 14 - Prob. 14RQCh. 14 - Prob. 15RQCh. 14 - Prob. 16RQCh. 14 - If the Sun has a Schwarzschild radius, why isnt it...Ch. 14 - Prob. 18RQCh. 14 - Prob. 19RQCh. 14 - Prob. 20RQCh. 14 - Prob. 21RQCh. 14 - In what sense is a black hole actually black?Ch. 14 - If you are falling into a black hole and you point...Ch. 14 - Prob. 24RQCh. 14 - Prob. 25RQCh. 14 - Prob. 26RQCh. 14 - How Do We Know? How does peer review make fraud...Ch. 14 - Prob. 1PCh. 14 - Prob. 2PCh. 14 - Prob. 3PCh. 14 - Prob. 4PCh. 14 - Prob. 5PCh. 14 - Prob. 6PCh. 14 - Prob. 7PCh. 14 - Prob. 8PCh. 14 - Prob. 9PCh. 14 - Prob. 10PCh. 14 - Prob. 11PCh. 14 - Prob. 12PCh. 14 - Prob. 13PCh. 14 - Prob. 14PCh. 14 - Prob. 15PCh. 14 - Prob. 16PCh. 14 - Prob. 1SOPCh. 14 - Prob. 2SOPCh. 14 - Prob. 1LTLCh. 14 - Prob. 2LTLCh. 14 - Prob. 3LTLCh. 14 - Prob. 4LTLCh. 14 - Prob. 5LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the average density of a neutron star that has the same mass as the sun but a radius of 91.574 km? Answer should be in the proper SI unit and without scientific notation.arrow_forwardWhat is the average density of a neutron star that has the same mass as the sun but a radius of only 22.95 km? (Pls state the answer in the proper SI unit and without scientific notation)arrow_forwardThe relationship between the average luminosity and pulsation period for Cepheid variable stars can be written L = L⊙P3.7, where the period P is measured in days. A cepheid variable is observed in a distant galaxy, and is determined to have a pulsation period of 50 days. The average flux received from this star is measured to be 2.14×10−16Wm−2. Determine the distance to the galaxy and express your answer in units of Mpc.arrow_forward
- If the radius of the neutron star is 85.074 km, what is the average density of a neutron star that has the same mass as the sun but a radius of only 20.0 km?(numeric value only and without scientific notation)arrow_forwardIf the radius of the neutron star is 85.074 km, what is the average density of a neutron star that has the same mass as the sun but a radius of only 20.0 km? (express your answer in the proper SI unit and without scientific notation)arrow_forwardWhat is the average density of a neutron star that has the same mass as the sun but a radius of only 20.0 km?arrow_forward
- Models of the first star-forming clouds indicate that they had a temperature of roughly 150 K and a particle density of roughly 400,000 particles per cubic centimeter at the time they started trapping their internal thermal energy. ▼ Part A Estimate the mass at which thermal pressure balances gravity for these values of pressure and temperature. Express your answer in kilograms. —| ΑΣΦ Mcloud Submit Part B = Mcloud How does that mass compare with the Sun's mass? Express your answer in solar masses. Submit Request Answer = ΤΙ ΑΣΦ Request Answer ? ? kg MSun Reviewarrow_forwardWhat is the escape velocity Vesc of a 1.4?⊙ neutron star if its radius is 12 km? Express your answer as a multiple of the speed of light (i.e., compute Vesc/c, where c= 2.9979 x 105 km/s). [Hint: you will need to recall the formula for escape speed from the surface of an object. This was discussed when we covered planetary atmospheres.]arrow_forwardAfter the Sun exhausts its nuclear fuel, its ultimate fate will be to collapse to a white dwarf state. In this state, it would have approximately the same mass as it has now, but its radius would be equal to the radius of the Earth. (a) Calculate the average density of the white dwarf (in kg/m³). kg/m3 (b) Calculate the surface free-fall acceleration (in m/s). m/s? (c) Calculate the gravitational potential energy (in J) associated with a 3.38 kg object at the surface of the white dwarf. J (d) What If? The escape speed from the "surface" of the Sun, or a distance equal to its radius, is 617.5 km/s. What would be the escape speed (in km/s) from the surface of the white dwarf? km/sarrow_forward
- A star with mass m, period Ti = 30 days, and radius ri = 1E4 km collapses into a neutron star (Links to an external site.) with a radius of rf = 3 km. Our goal will be to determine the period Tf of the neutron star. Useful formulae: Li=Lf; L=Iω; ω=2πf=2π/T; Isphere=2/5mr^2. 1.How much angular momentum Li does the star have before it collapses? 2. What is the rotation rate ωi of the star before collapsing? 3. Suppose we model the star as a solid sphere of radius ri with moment of inertia 2/5mri2 (a good assumption). What does our description of Li read now? 4.How much angular momentum Lf does the star have after it collapses? 5. What is the rotation rate ωf of the star after collapsing? 6.The new object, a neutron star, is also shaped like a sphere. What does Lf read? Group of answer choices 7.Assuming angular momentum is conserved during collapse (also a good assumption), what is our prediction for the period of the neutron star, Tf? 8. What is Tf in units of days? 9. What…arrow_forwardHow close, r, to the center of a neutron star would a manned satellite be orbiting if it were at the location where the gravitational force from the star equaled the gravitational force of the Earth's surface? RN = neutron star radius = 1 × 104 kmM N = neutron star mass = 3 × 1030 kgG = universal gravitational constant = 6.67 × 10-11 N m2 / kg2g⊕ = Earth gravitational acceleration = 9.807 m/s²arrow_forwardAfter the Sun exhausts its nuclear fuel, its ultimate fate will be to collapse to a white dwarf state. In this state, it would have approximately the same mass as it has now, but its radius would be equal to the radius of the Earth. (a) Calculate the average density of the white dwarf (in kg/m³). |kg/m3 (b) Calculate the surface free-fall acceleration (in m/s). m/s? (c) Calculate the gravitational potential energy (in J) associated with a 5.61 kg object at the surface of the white dwarf. (d) What If? The escape speed from the "surface" of the Sun, or a distance equal to its radius, is 617.5 km/s. What would be the escape speed (in km/s) from the surface of the white dwarf? km/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning