Foundations of Astronomy (MindTap Course List)
14th Edition
ISBN: 9781337399920
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14, Problem 14RQ
To determine
The reason for astronomers to believe that the first discovered millisecond pulsar was of recently born.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(Astronomy)
PSR1913+16 Problem II. Using only the Figure, what are the maximum radial velocities as found from the redshift and blueshift, respectively? Note: redshifts have positive radial velocities values in the figure, whereas blueshifts have negative radial velocity values.
(Answer in km/s)
If the accretion disk around a neutron star has a radius of 2 × 105 km,
what is the orbital velocity of a particle at its outer edge?
If the book's example of the Schwarzchild radius of the supermassive black hole Sag A* with a mass of ~4 million (aka 4*10^6) solar masses is approximately 1.2*10^10 m (or rewritten as 12*10^9 m), what would be the Schwarzchild radius of something with the mass of Jupiter (~0.001 or 10^(-3) solar masses) be? How does this compare to the size of an average person (~1.5 m)?
Chapter 14 Solutions
Foundations of Astronomy (MindTap Course List)
Ch. 14 - Prob. 1RQCh. 14 - Prob. 2RQCh. 14 - Prob. 3RQCh. 14 - Prob. 4RQCh. 14 - Prob. 5RQCh. 14 - Prob. 6RQCh. 14 - Prob. 7RQCh. 14 - Prob. 8RQCh. 14 - Prob. 9RQCh. 14 - Prob. 10RQ
Ch. 14 - Prob. 11RQCh. 14 - Prob. 12RQCh. 14 - Prob. 13RQCh. 14 - Prob. 14RQCh. 14 - Prob. 15RQCh. 14 - Prob. 16RQCh. 14 - If the Sun has a Schwarzschild radius, why isnt it...Ch. 14 - Prob. 18RQCh. 14 - Prob. 19RQCh. 14 - Prob. 20RQCh. 14 - Prob. 21RQCh. 14 - In what sense is a black hole actually black?Ch. 14 - If you are falling into a black hole and you point...Ch. 14 - Prob. 24RQCh. 14 - Prob. 25RQCh. 14 - Prob. 26RQCh. 14 - How Do We Know? How does peer review make fraud...Ch. 14 - Prob. 1PCh. 14 - Prob. 2PCh. 14 - Prob. 3PCh. 14 - Prob. 4PCh. 14 - Prob. 5PCh. 14 - Prob. 6PCh. 14 - Prob. 7PCh. 14 - Prob. 8PCh. 14 - Prob. 9PCh. 14 - Prob. 10PCh. 14 - Prob. 11PCh. 14 - Prob. 12PCh. 14 - Prob. 13PCh. 14 - Prob. 14PCh. 14 - Prob. 15PCh. 14 - Prob. 16PCh. 14 - Prob. 1SOPCh. 14 - Prob. 2SOPCh. 14 - Prob. 1LTLCh. 14 - Prob. 2LTLCh. 14 - Prob. 3LTLCh. 14 - Prob. 4LTLCh. 14 - Prob. 5LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The best parallaxes obtained with Hipparcos have an accuracy of 0.001 arcsec. If you want to measure the distance to a star with an accuracy of 10%, its parallax must be 10 times larger than the typical error. How far away can you obtain a distance that is accurate to 10% with Hipparcos data? The disk of our Galaxy is 100,000 light-years in diameter. What fraction of the diameter of the Galaxy’s disk is the distance for which we can measure accurate parallaxes?arrow_forwardthe co te on Pictor. The 270 TOI System TOI 270 c Earth 365-day orbit $1 AU from Sun Habitable 5.7-day orbit 0.05 AU $2.4 Earth radii Largest in system 59 F, 15 C 300 F, 150 C TOI 270 TOI 270 d M3-type dwarf star TOI 270 b $11.4-day orbit 0.07 AU 3.4-day orbit 2.1 Earth radii 0.03 AU Temperate 1.25 Earth radii Likely rocky 150 F. 67 C 490 F. 254 C Figure taken from https://exoplanets.nasa.gov/news/1593/tess-scores-hat-trick-with-3-new-worlds/ What makes the TOI-270 system particularly interesting is that the three exoplanets detected this far (there may be more) have sizes comparable to the Earth. Compare the orbital period of TOI 270 c and TOI 270 d. For every revolution that TOI 270 d makes around the host star TOI 270, how many revolutions does TOI 270 c make?arrow_forward(Astronomy) (Part A) White Dwarf Size II. The white dwarf, Sirius B, contains 0.98 solar mass, and its density is about 2 × 106 g/cm3. Find the radius of the white dwarf in km to three significant digits. (Hint: Density = mass⁄volume, and the volume of a sphere is 4/3πr3). (Part B) Compare your answer with the radii of the planets listed in the Table A-10. Which planet is this white dwarf is closely equal to in size?arrow_forward
- Why do millisecond pulsars spin so fast?arrow_forwardAll millisecond pulsars are now, or once were, members of bi- nary star systems. (T/F)arrow_forwardWhat is the orbital period of a bit of matter in an accretion disk that is located 8 x 10^5 km from a 82 M black hole? (Hint: Use the circular orbit velocity formula, V c = GM/R)arrow_forward
- Why is it possible for repeated nova explosions to occur in the same binary system?arrow_forwardA star is transited by a planet. From the measured period T and the transit duration t alone, show that one can obtain an upper bound on the density of the transited star : rhomax= 3T/(G(pi2)(t3)). Hint: Combine Kepler's Law [(omega2)(a3)=GMstar and the equation t=((rstarT)/(pi*a))*(1-b2)1/2 to eliminate a, and then extract the density of the spherical star. The upper bound is obtained by assuming an impact parameter b=0.arrow_forwardHow close, r, to the center of a neutron star would a manned satellite be orbiting if it were at the location where the gravitational force from the star equaled the gravitational force of the Earth's surface? RN = neutron star radius = 1 × 104 kmM N = neutron star mass = 3 × 1030 kgG = universal gravitational constant = 6.67 × 10-11 N m2 / kg2g⊕ = Earth gravitational acceleration = 9.807 m/s²arrow_forward
- (Astronomy) Binary Pulsar. Part A: Use the orbital period 27 min for the binary pulsar (two neutron stars orbit each other) to find the orbital separation of the pair in AU and solar radii. Assume a neutron star's mass is 3 solar masses. (Hints: Use the version of Kepler's third law for binary stars.) Part B: Is this system orbiting closer or further than Mercury is to the Sun?arrow_forward(Astronomy) White Dwarf Size I. The density of Sirius B is 2×106 g/cm3 and its mass is 1.95×1030 kg. What is the radius of the white dwarf in km? (Hint: Density = mass/volume, and the volume of a sphere is 4/3πr3) Please round your answer to two significant digits.arrow_forwardIf a circular accretion disk around a 1.4 M, neutron star has a radius of 8.00 x 10° km as measured from the center of the neutron star to the edge of the disk, what is the orbital velocity (in km/s) of a gas particle located at its outer edge? (The mass of the Sun is GM 1.99 x 1030 kg. Hint: Use the circular orbit velocity formula, V. = -; make sure to express quantities in units of meters, kilograms, and seconds.) km/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning