Engineering Mechanics: Statics & Dynamics (14th Edition)
14th Edition
ISBN: 9780133915426
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
thumb_up100%
Chapter 13.6, Problem 107P
The forked rod is used to move the smooth 2-lb particle around the horizontal path in the shape of a limaҫon, r = (2 + cos θ) ft. If θ = (0.5t2) rad. where t is in seconds, determine the force which the rod exerts on the particle at the instant t = 1 s. The fork and path contact the particle on only one side.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The quarter-circular slotted arm OA is rotating about a horizontal axis through point O with a constant counterclockwise angular
velocity2=5.7 rad /sec. The 0.19-lb particle Pis epoxied to the arm at the position 3-56º. Determine the magnitude of the tangential
force F parallel to the slot which the epoxy must support so that the particle does not move along the slot. The value of R-1.1 ft.
B
22
R
P
The forked rod is used to move the smooth
2-lb particle around the horizontal path in the shape of a
limaçon, r = (2 + cos 0) ft. If at all times 0 = 0.5 rad/s,
determine the force which the rod exerts on the particle at
the instant 0 = 90°. The fork and path contact the particle
on only one side.
-3 ft-
The quarter-circular slotted arm OA is rotating about a horizontal axis through point O with a constant counterclockwise angular velocity 2
position B = 60°. Determine the magnitude of the tangential force F parallel to the slot which the epoxy must support so that the particle does not move along the slot. The value of R = 1.4 ft.
8.5 rad /sec. The 0.14-lb particle P is epoxied to the arm at the
%3D
A
-R
P
0.277
Ib
Answer: F =
Chapter 13 Solutions
Engineering Mechanics: Statics & Dynamics (14th Edition)
Ch. 13.4 - The 10-kg block is subjected to the forces shown....Ch. 13.4 - The 10-kg block is subjected to the forces shown....Ch. 13.4 - Determine the initial acceleration of the 10-kg...Ch. 13.4 - Prob. 4PPCh. 13.4 - Prob. 1FPCh. 13.4 - If motor M exerts a force of F = (10t2 + 100) N on...Ch. 13.4 - A spring of stiffness k = 500 N/m is mounted...Ch. 13.4 - Prob. 5FPCh. 13.4 - Block B rests upon a smooth surface. If the...Ch. 13.4 - The 6-lb particle is subjected to the action of...
Ch. 13.4 - The two boxcars A and B have a weight of 20 000 lb...Ch. 13.4 - If the coefficient of kinetic friction between the...Ch. 13.4 - If the 50-kg crate starts from rest and achieves a...Ch. 13.4 - If blocks A and B of mass 10 kg and 6 kg...Ch. 13.4 - The 10-lb block has a speed of 4 ft/s when the...Ch. 13.4 - The 10-lb block has a speed of 4 ft/s when the...Ch. 13.4 - Prob. 8PCh. 13.4 - The conveyor belt is moving at 4 m/s. If the...Ch. 13.4 - The conveyor belt is designed to transport...Ch. 13.4 - Determine the time needed to pull the cord at B...Ch. 13.4 - Prob. 12PCh. 13.4 - Block A has a weight of 8 lb and block B has a...Ch. 13.4 - The 2-Mg truck is traveling at 15 m/s when the...Ch. 13.4 - The motor lifts the 50-kg crate with an...Ch. 13.4 - Prob. 16PCh. 13.4 - Prob. 17PCh. 13.4 - Prob. 18PCh. 13.4 - Prob. 19PCh. 13.4 - Prob. 20PCh. 13.4 - The conveyor belt delivers each 12-kg crate to the...Ch. 13.4 - The 50-kg block A is released from rest. Determine...Ch. 13.4 - Prob. 23PCh. 13.4 - Prob. 24PCh. 13.4 - Prob. 25PCh. 13.4 - The 1.5 Mg sports car has a tractive force of F =...Ch. 13.4 - Prob. 27PCh. 13.4 - Prob. 28PCh. 13.4 - Prob. 29PCh. 13.4 - Prob. 30PCh. 13.4 - Prob. 31PCh. 13.4 - The tractor is used to lift the 150-kg load B with...Ch. 13.4 - Prob. 33PCh. 13.4 - Prob. 34PCh. 13.4 - Prob. 35PCh. 13.4 - Prob. 36PCh. 13.4 - The 10-kg block A rests on the 50-kg p late B in...Ch. 13.4 - The 300-kg bar B, originally at rest, is being...Ch. 13.4 - Prob. 39PCh. 13.4 - The 400-lb cylinder at A is hoisted using the...Ch. 13.4 - Prob. 41PCh. 13.4 - Block A has a mass mA and is attached to a spring...Ch. 13.4 - Prob. 43PCh. 13.4 - If the motor draws in the cable with an...Ch. 13.4 - If the force exerted on cable AB by the motor is F...Ch. 13.4 - Prob. 46PCh. 13.4 - Prob. 47PCh. 13.4 - Prob. 48PCh. 13.4 - If a horizontal force P = 12lb is applied to block...Ch. 13.4 - Prob. 50PCh. 13.4 - Prob. 51PCh. 13.5 - Set up the n, t axes and write the equations of...Ch. 13.5 - Prob. 6PPCh. 13.5 - The block rests at a distance of 2 m from the...Ch. 13.5 - Determine the maximum speed that the jeep can...Ch. 13.5 - A pilot weighs 150 lb and is traveling at a...Ch. 13.5 - The sports car is traveling along a 30 banked road...Ch. 13.5 - If the 10-kg ball has a velocity of 3m/ s when it...Ch. 13.5 - Prob. 12FPCh. 13.5 - Prob. 52PCh. 13.5 - Prob. 53PCh. 13.5 - The 2-kg block B and 15-kg cylinder A are...Ch. 13.5 - Determine the maximum constant speed at which the...Ch. 13.5 - Cartons having a mass of 5 kg are required to move...Ch. 13.5 - Prob. 57PCh. 13.5 - The 2-kg spool S fits loosely on the inclined rod...Ch. 13.5 - Prob. 59PCh. 13.5 - Prob. 60PCh. 13.5 - At the instant B = 60, the boys center of mass G...Ch. 13.5 - Prob. 62PCh. 13.5 - Prob. 63PCh. 13.5 - Prob. 64PCh. 13.5 - Prob. 65PCh. 13.5 - Prob. 66PCh. 13.5 - Prob. 67PCh. 13.5 - The 0.8-Mg car travels over the hill having the...Ch. 13.5 - The 0.8-Mg car travels over the hill having the...Ch. 13.5 - The package has a weight of 5 lb and slides down...Ch. 13.5 - The 150-lb man lies against the cushion for which...Ch. 13.5 - The 150-lb man lies against the cushion for which...Ch. 13.5 - Determine the maximum speed at which the car with...Ch. 13.5 - Determine the maximum constant speed at which the...Ch. 13.5 - The box has a mass m and slides down the smooth...Ch. 13.5 - Prob. 76PCh. 13.5 - Prob. 77PCh. 13.5 - Prob. 78PCh. 13.5 - The airplane, traveling at a constant speed of 50...Ch. 13.5 - Prob. 80PCh. 13.5 - Prob. 81PCh. 13.5 - Prob. 82PCh. 13.5 - The ball has a mass m and is attached to the cord...Ch. 13.6 - The 2-lb block is released from rest at A and...Ch. 13.6 - Determine the constant angular velocity of the...Ch. 13.6 - The 0.2-kg ball is blown through the smooth...Ch. 13.6 - The 2-Mg car is traveling along the curved road...Ch. 13.6 - The 0.2-kg pin P is constrained to move in the...Ch. 13.6 - The spring-held follower AB has a weight of 0.75...Ch. 13.6 - Determine the magnitude of the resultant force...Ch. 13.6 - The path of motion of a 5-lb particle in the...Ch. 13.6 - Rod OA rotates counterclockwise with a constant...Ch. 13.6 - The boy of mass 40 kg is sliding down the spiral...Ch. 13.6 - Using a forked rod, a 0.5-kg smooth peg P is...Ch. 13.6 - The arm is rotating at a rate of = 4 rad/s when ...Ch. 13.6 - If arm OA rotates with a constant clockwise...Ch. 13.6 - Determine the normal and frictional driving forces...Ch. 13.6 - A smooth can C, having a mass of 3 kg, is lifted...Ch. 13.6 - The spring-held follower AB has a mass of 0.5 kg...Ch. 13.6 - The spring-held follower AB has a mass of 0.5 kg...Ch. 13.6 - The particle has a mass of 0.5 kg and is confined...Ch. 13.6 - A car of a roller coaster travels along a track...Ch. 13.6 - The 0.5-lb ball is guided along the vertical...Ch. 13.6 - The ball of mass misguided along the vertical...Ch. 13.6 - Prob. 102PCh. 13.6 - The pilot of the airplane executes a vertical loop...Ch. 13.6 - The collar has a mass of 2 kg and travels along...Ch. 13.6 - The particle has a mass of 0.5 kg and is confined...Ch. 13.6 - Solve Prob. 13-105 If the arm has an angular...Ch. 13.6 - The forked rod is used to move the smooth 2-lb...Ch. 13.6 - The collar, which has a weight of 3 lb. slides...Ch. 13.6 - Prob. 109PCh. 13.6 - Prob. 110PCh. 13.7 - The pilot of an airplane executes a vertical loop...Ch. 13.7 - Prob. 113PCh. 13.7 - A communications satellite is in a circular orbit...Ch. 13.7 - Prob. 115PCh. 13.7 - Prob. 116PCh. 13.7 - Prob. 117PCh. 13.7 - Prob. 118PCh. 13.7 - Prob. 119PCh. 13.7 - Prob. 120PCh. 13.7 - The rocket is in free flight along an elliptical...Ch. 13.7 - Prob. 122PCh. 13.7 - Prob. 123PCh. 13.7 - Prob. 124PCh. 13.7 - Prob. 126PCh. 13.7 - Prob. 127PCh. 13.7 - Prob. 128PCh. 13.7 - Prob. 129PCh. 13.7 - Prob. 130PCh. 13.7 - Prob. 131PCh. 13.7 - The rocket is traveling around the earth in free...Ch. 13.7 - Prob. 3CPCh. 13.7 - Prob. 1RPCh. 13.7 - Prob. 2RPCh. 13.7 - Block B rests on a smooth surface. If the...Ch. 13.7 - Prob. 4RPCh. 13.7 - Prob. 5RPCh. 13.7 - The bottle rests at a distance of 3ft from the...Ch. 13.7 - Prob. 7RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The forked rod is used to move the smooth 2-lb particle around the horizontal path in the shape of a limacon, r = (2 + 2cos0) ft. If at all times ė = 0.8 rad/s, determine the force which the rod exerts on the particle at the instant Ꮎ = 30°. The fork and path contact the particle on one side only. 2 ft 0 4ftarrow_forwardThe spring is not stretched or compressed when “s=0.8m" and the 11 kg block which is subjected to a force of 105 N has a speed of 5.5 m/s down the smooth plane. Using "THE PRINCIPLE OF WORK AND ENERGY", find the distance "s" when the block STOPS. k = 200 N/m 5 m/s F = 100 N 30°arrow_forwardDetermine the magnitude of the resultant force acting on a 5-kg particle at the instant t = 2 s, if the particle is moving along a horizontal path defined by the equations r = (2t + 10) m and theta = (1.5t^2 - 6t) rad, where t is in seconds.arrow_forward
- The forked rod is used to move the smooth 3 lb particle around the horizontal path in the shape of a limaçon, r=(2+cose) ft. If 0=(0.5t2) rad, where t is in seconds, determine the force which the rod exerts on the particle at the instant t=1 s. The fork and path contact the particle on only one side.arrow_forwardThe small cylinder C has a mass of 10 kg and is attached to the end of a rod whose mass may be neglected. The frame is subjected to a couple of moment M = 26Nm, and the cylinder is subjected to a force of F = (5t² + 6) N, where t is in seconds, which is always directed in the same direction as the cylinder's velocity as shown. The cylinder has a speed vo= 2 m/s when t = 0. (Figure 1) Figure 0.75 m M 1 of 1 Part A Determine the speed of the cylinder when t = 3 s. Express your answer to three significant figures and include the appropriate units. v= |μA Value Submit Request Answer < Return to Assignment Units Provide Feedback ?arrow_forwardThe horizontal force P = 40-10t N (t is the time measured in seconds) is applied to the 2- kg collar that slides along the inclined rod. 2 kg- -P = (40– 10r)N At time t = 0, the position coordinate of the collar is x = 0, and its velocity is vo = 3 m/s directed down the rod. Find the time T and the speed Sof the collar when it returns to the position x = 0 for the first time. Neglect friction.arrow_forward
- Am = 12 kg particle is moving along a horizontal path defined by the equations r= (4.5.t+13) m and = = (4.5-t2-3) rad, where t is in seconds. Using equations of motion in cylindrical coordinates, a. Determine the radial force component at the instant t = 5 s, Fr. b. Determine the transverve force component at the instant t = 5 s, F. c. Determine the magnitude of the resultant force at the instant t = 5 s, FR Round your final answers to 3 significant digits/figures. Fr= Fe= FR = N N Narrow_forwardThe slotted arm OA rotates about a fixed axis through O. At the instant under consideration, 0 = 26°, Ò = 50 deg/s, and Ö – 14 deg/s². Determine the magnited of the force Fapplied by arm OA and the magnitude of the force N applied by the sides of the slot to the 0.3-kg slider B. Neglect all friction, and let L = 0.74 m. The motion occurs in a vertical plane. B т -Larrow_forwardA catapult is used to throw large projectiles by the ancient civilization. If a catapult swung from rest position and shot a 10-kg projectile at a velocity of 50 meters per second. Determine the force in Newtons exerted by the catapult on the projectile.arrow_forward
- The smooth particle has a mass of 80 g. It is attached to an elastic cord extending from O to P and due to the slotted arm guide moves along the horizontal circular path r=(0.8sinθ)m. If the cord has a stiffness k= 24 N/m and an unstretched length of 0.25 m, determine the force of the guide on the particle when θ=60. The guide has a constant angular velocity θ˙=5rad/sarrow_forwardRod OA rotates counterclockwise at a constant angular rate θ˙ = 4 rad/s. The double collar B is pin-connected together such that one collar slides over the rotating rod and the other collar slides over the circular rod described by the equation r=(1.6cosθ)m. Both collars have a mass of 0.55 kg . Motion is in the horizontal plane. Determine the magnitude of the force which the circular rod exerts on one of the collars at the instant θ = 45∘ Determine the magnitude of the force that OA exerts on the other collar at the instant θ = 45∘arrow_forwardParvinbhaiarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Undamped Free Vibration of SDOF (1/2) - Structural Dynamics; Author: structurefree;https://www.youtube.com/watch?v=BkgzEdDlU78;License: Standard Youtube License