Write the equilibrium expression for each of the following reactions:
a.
b.
c.
d.
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
Basic Chemistry
- 1. Which of the following is the correct form of the equilibrium constant expression for the decomposition of SO3 to SO2 and O2? Kc = [SO2][O2]/[SO3] Kc = [SO2]2[O2]/[SO3]2 Kc = [SO3]2/[SO2]2[O2] Kc = [SO2][O2]2arrow_forwardThe formation of ammonia from its elements is an important industrial process. 3 H2(g) + N2(g) 2 NH3(g) 1. Does the reaction shift to the right or to the left, or does it remain unchanged, when extra H2 is added? (a) shift left (b) shift right (c)unchangedarrow_forwardA mixture of SO2, O2, and SO3 at 1000 K contains the gases at the following concentrations: [SO2] = 5.0 103 mol/L, [O2] = 1.9 103 mol/L, and [SO3] = 6.9 103 mol/L. Is the reaction at equilibrium? If not, which way will the reaction proceed to reach equilibrium? 2 SO2(g) + O2(g) 2 SO3(g) Kc = 279arrow_forward
- Consider the following equilibria involving SO2(g) and their corresponding equilibrium constants. SO2(g) + 12 O2(g) SO3(g) K1 2SO3(g) 2SO2(g) + O2(g) K2 Which of the following expressions relates K1 to K2? (a) K2=K12 (b) K22=K1 (c) K2 = K1 (d) K2 = 1/K1 (e) K2=1/K12arrow_forward. Consider an equilibrium mixture consisting of H2O(g), CO(g). H2(g), and CO2(g) reacting in a closed vessel according to the equation H2O(g)+CO(g)H2(g)+CO2(g)a. You add more H2O to the flask. How does the new equilibrium concentration of each chemical compare to its origin al equilibrium concentration after equilibrium is re-established? Justify your answer. b. You add more H2to the flask. How does the concentration of each chemical compare to its original concentration after equilibrium is re-established? Justify your answer.arrow_forwardConsider the following hypothetical dissociation: AB3(s) A3+(aq)+3 B(aq)H0What effect will each of the following have on the position of equilibrium? (a) addition of A(NO3)3 (b) increase in temperature (c) adding Na+, forming NaBarrow_forward
- Phosphorus pentachloride decomposes at elevated temperatures. PCl5(g) PCl3(g) + Cl2(g) An equilibrium mixture at some temperature consists of 3.120 g of PCl5, 3.845 g of PCl3, and 1.787 g of Cl2 in a 10.0-L flask. If you add 1.418 g of Cl2, how will the equilibrium be affected? What will the concentrations of PCl5, PCl3, and Cl2 be when equilibrium is reestablished?arrow_forward. Consider the reaction 2CO(g)+O2(g)2CO2(g)Suppose the system is already at equilibrium, and then an additional mole of CO2(g) is injected into the system at constant temperature. Does the amount of O2(g) in the system increase or decrease? Does the value of K for the reaction change?arrow_forwardFor the following endothermic reaction at equilibrium: 2SO3(g)2SO2(g)+O2(g) which of the following changes will increase the value of K? a. increasing the temperature b. decreasing the temperature c. removing SO3(g) (constant T) d. decreasing the volume (constant T) e. adding Ne(g) (constant T) f. adding SO2(g) (constant T) g. adding a catalyst (constant T)arrow_forward
- 12.103 Methanol, CH3OH, can be produced by the reaction of CO with H2, with the liberation of heat. All species in the reaction are gaseous. What effect will each of the following have on the equilibrium concentration of CO? (a) Pressure is increased, (b) volume of the reaction container is decreased, (c) heat is added, (d) the concentration of CO is increased, (e) some methanol is removed from the container, and (f) H2 is added.arrow_forwardThe equilibrium constant Kc for the synthesis of methanol, CH3OH. CO(g)+2H2(g)CH3OH(g) is 4.3 at 250C and 1.8 at 275C. Is this reaction endothermic or exothermic?arrow_forwardWrite equilibrium constant expressions for the following reactions. For gases, use either pressures or concentrations. (a) 2 H2O2(g) 2 H2O(g) + O2(g) (b) CO(g) + O2g CO2(g) (c) C(s) + CO2(g) 2 CO(g) (d) NiO(s) + CO(g) Ni(s) + CO2(g)arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning