Elementary Statistics ( 3rd International Edition ) Isbn:9781260092561
3rd Edition
ISBN: 9781259969454
Author: William Navidi Prof.; Barry Monk Professor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13.3, Problem 12E
a)
To determine
To find: The equation of the multiple regression line.
b)
To determine
To find: The value of y when
c)
To determine
To find: The percentage of variation that has been explained in the model.
d)
To determine
To explain: Whether the model is useful for prediction.
e)
To determine
To check: Whether the null hypotheses could be rejected for the hypotheses
,
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The following table gives the data for the average temperature and the snow accumulation in several small towns for a single month. Determine the equation of the regression line, yˆ=b0+b1xy^=b0+b1x. Round the slope and y-intercept to the nearest thousandth. Then determine if the regression equation is appropriate for making predictions at the 0.01 level of significance.
Average Temperatures and Snow Accumulations
Average Temperature (℉℉)
45
34
24
45
39
20
31
19
35
44
Snow Accumulation (in.in.)
9
16
24
9
15
28
25
18
16
5
1. Regression equation: y=__________
2. Is the equation appropriate? yes or no
The following table gives the data for the average temperature and the snow accumulation in several small towns for a single month. Determine the equation of the regression line, yˆ=b0+b1xy^=b0+b1x. Round the slope and y-intercept to the nearest thousandth. Then determine if the regression equation is appropriate for making predictions at the 0.010.01 level of significance.
Average Temperatures and Snow Accumulations
Average Temperature (℉℉)
38
30
17
39
45
22
34
24
29
38
Snow Accumulation (in.in.)
6
19
27
5
13
26
26
14
13
5
Copy Data
The following table gives the data for the grades on the midterm exam and the grades on the final exam. Determine the equation of the regression line, yˆ=b0+b1x�^=�0+�1�. Round the slope and y-intercept to the nearest thousandth.
Grades on Midterm and Final Exams
Grades on Midterm
7171
6262
7878
9494
8383
8181
8080
9494
8585
6262
Grades on Final
8888
7979
8888
9191
8080
7070
7171
9393
6565
7777
Chapter 13 Solutions
Elementary Statistics ( 3rd International Edition ) Isbn:9781260092561
Ch. 13.1 - Prob. 7ECh. 13.1 - Prob. 8ECh. 13.1 - In Exercises 9 and 10, determine whether the...Ch. 13.1 - Prob. 10ECh. 13.1 - Prob. 11ECh. 13.1 - Prob. 12ECh. 13.1 - Prob. 13ECh. 13.1 - Prob. 14ECh. 13.1 - Prob. 15ECh. 13.1 - Prob. 16E
Ch. 13.1 - Prob. 17ECh. 13.1 - Prob. 18ECh. 13.1 - Prob. 19ECh. 13.1 - Prob. 20ECh. 13.1 - Prob. 21ECh. 13.1 - Prob. 22ECh. 13.1 - Prob. 23ECh. 13.1 - Prob. 24ECh. 13.1 - Prob. 25ECh. 13.1 - Prob. 26ECh. 13.1 - Prob. 27ECh. 13.1 - Prob. 28ECh. 13.1 - Prob. 26aECh. 13.1 - Calculator display: The following TI-84 Plus...Ch. 13.1 - Prob. 28aECh. 13.1 - Prob. 29ECh. 13.1 - Prob. 30ECh. 13.1 - Confidence interval for the conditional mean: In...Ch. 13.2 - Prob. 3ECh. 13.2 - Prob. 4ECh. 13.2 - Prob. 5ECh. 13.2 - Prob. 6ECh. 13.2 - Prob. 7ECh. 13.2 - Prob. 8ECh. 13.2 - Prob. 9ECh. 13.2 - Prob. 10ECh. 13.2 - Prob. 11ECh. 13.2 - Prob. 12ECh. 13.2 - Prob. 13ECh. 13.2 - Prob. 14ECh. 13.2 - Prob. 15ECh. 13.2 - Prob. 16ECh. 13.2 - Prob. 17ECh. 13.2 - Dry up: Use the data in Exercise 26 in Section...Ch. 13.2 - Prob. 19ECh. 13.2 - Prob. 20ECh. 13.2 - Prob. 21ECh. 13.3 - Prob. 7ECh. 13.3 - Prob. 8ECh. 13.3 - Prob. 9ECh. 13.3 - In Exercises 9 and 10, determine whether the...Ch. 13.3 - Prob. 11ECh. 13.3 - Prob. 12ECh. 13.3 - Prob. 13ECh. 13.3 - For the following data set: Construct the multiple...Ch. 13.3 - Engine emissions: In a laboratory test of a new...Ch. 13.3 - Prob. 16ECh. 13.3 - Prob. 17ECh. 13.3 - Prob. 18ECh. 13.3 - Prob. 19ECh. 13.3 - Prob. 20ECh. 13.3 - Prob. 21ECh. 13.3 - Prob. 22ECh. 13.3 - Prob. 23ECh. 13 - A confidence interval for 1 is to be constructed...Ch. 13 - A confidence interval for a mean response and a...Ch. 13 - Prob. 3CQCh. 13 - Prob. 4CQCh. 13 - Prob. 5CQCh. 13 - Prob. 6CQCh. 13 - Construct a 95% confidence interval for 1.Ch. 13 - Prob. 8CQCh. 13 - Prob. 9CQCh. 13 - Prob. 10CQCh. 13 - Prob. 11CQCh. 13 - Prob. 12CQCh. 13 - Prob. 13CQCh. 13 - Prob. 14CQCh. 13 - Prob. 15CQCh. 13 - Prob. 1RECh. 13 - Prob. 2RECh. 13 - Prob. 3RECh. 13 - Prob. 4RECh. 13 - Prob. 5RECh. 13 - Prob. 6RECh. 13 - Prob. 7RECh. 13 - Prob. 8RECh. 13 - Prob. 9RECh. 13 - Prob. 10RECh. 13 - Air pollution: Following are measurements of...Ch. 13 - Icy lakes: Following are data on maximum ice...Ch. 13 - Prob. 13RECh. 13 - Prob. 14RECh. 13 - Prob. 15RECh. 13 - Prob. 1WAICh. 13 - Prob. 2WAICh. 13 - Prob. 1CSCh. 13 - Prob. 2CSCh. 13 - Prob. 3CSCh. 13 - Prob. 4CSCh. 13 - Prob. 5CSCh. 13 - Prob. 6CSCh. 13 - Prob. 7CS
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- Olympic Pole Vault The graph in Figure 7 indicates that in recent years the winning Olympic men’s pole vault height has fallen below the value predicted by the regression line in Example 2. This might have occurred because when the pole vault was a new event there was much room for improvement in vaulters’ performances, whereas now even the best training can produce only incremental advances. Let’s see whether concentrating on more recent results gives a better predictor of future records. (a) Use the data in Table 2 (page 176) to complete the table of winning pole vault heights shown in the margin. (Note that we are using x=0 to correspond to the year 1972, where this restricted data set begins.) (b) Find the regression line for the data in part ‚(a). (c) Plot the data and the regression line on the same axes. Does the regression line seem to provide a good model for the data? (d) What does the regression line predict as the winning pole vault height for the 2012 Olympics? Compare this predicted value to the actual 2012 winning height of 5.97 m, as described on page 177. Has this new regression line provided a better prediction than the line in Example 2?arrow_forwardWhat does the y -intercept on the graph of a logistic equation correspond to for a population modeled by that equation?arrow_forwardTable 2 shows a recent graduate’s credit card balance each month after graduation. a. Use exponential regression to fit a model to these data. b. If spending continues at this rate, what will the graduate’s credit card debt be one year after graduating?arrow_forward
- The slope of a regression line tells you how much or little a change in your dependent variable impacts your independent variable. O TrueO Falsearrow_forwardFor a group of children, mean age is 10 years with S.D. 2·5 years. The average height of the group is 125 cms with S.D. of 13 cms. The coefficient of correlation between age and height is 0-6. Write the equation of two regression lines and explain their use.arrow_forwardThe following linear regression model predicts a person's height (cm) from the length of their shoe print (cm) Height^=3.5×Shoe Print+80 What is the predicted height of a person with a 30 cm shoe print? Assume extrapolation is not an issue. 185 cm 80 cm 202.5 cm 167.5 cmarrow_forward
- please only answer the last part "Suppose that real income per capita in New Jersey increases by 1% in the next year. Use the results in column (4) to predict the change in the number of traffic fatalities in the next year. "arrow_forwardSuppose that for a typical FedEx package delivery, the cost of the shipment is a function of the weight of the package measured in ounces. You want to try to predict the cost of a typical shipment given package dimensions. If 10 packages in a city are sampled and the regression output is given below, report the regression equation. 1) (cost of delivery) = 1.468*(weight) - 23.015 2) (weight) = -23.015*(cost of delivery) + 1.468 3) (cost of delivery) = -23.015*(weight) + 1.468 4) (cost of delivery) = 1.468*(weight) 5) (weight) = 1.468*(cost of delivery) - 23.015arrow_forwardIs the regression equation for predicting Y in terms of X the same as the regression line for predicting X in terms of Y?arrow_forward
- A 10-year study conducted by the American Heart Association provided data on how age, blood pressure, and smoking related to the risk of strokes. The data file “Stroke.xslx” includes a portion of the data from the study. The variable “Risk of Stroke” is measured as the percentage of risk (proportion times 100) that a person will have a stroke over the next 10-year period. Regression Analysis As Image: 1) Based on the simple regression analysis output, write the estimated regression equation. 2) What is the correlation coefficient between Risk of Stroke and Age? How do you find iarrow_forwardSmokers don’t live as long (on average) as nonsmokers, and heavy smokers don’t live as long as light smokers. You regress the age at death of a group of male smokers on the number of packs per day they smoked. The slope of your regression line will be greater than 0. will be less than 0. can’t be determined without seeing the data.arrow_forwardFind the degrees of freedom in a regression model with an intercept term that has 88 observations and 7 explanatory variables.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning
- Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Correlation Vs Regression: Difference Between them with definition & Comparison Chart; Author: Key Differences;https://www.youtube.com/watch?v=Ou2QGSJVd0U;License: Standard YouTube License, CC-BY
Correlation and Regression: Concepts with Illustrative examples; Author: LEARN & APPLY : Lean and Six Sigma;https://www.youtube.com/watch?v=xTpHD5WLuoA;License: Standard YouTube License, CC-BY