Understanding Our Universe
Understanding Our Universe
3rd Edition
ISBN: 9780393614428
Author: PALEN, Stacy, Kay, Laura, Blumenthal, George (george Ray)
Publisher: W.w. Norton & Company,
bartleby

Concept explainers

Question
Book Icon
Chapter 13, Problem 36QAP

(a)

To determine

Mass lost per minute by Eta Carinae.

(b)

To determine

Mass lost per minute compared to mass of the Moon.

Blurred answer
Students have asked these similar questions
Let us imagine that the spectrum of a star is collected and we find the absorption line of Hydrogen-Alpha (the deepest absorption line of hydrogen in the visible part of the electromagnetic spectrum) to be observed at 656.5 nm instead of 656.3 nm as measured in a lab here on Earth. What is the velocity of this star in m/s? (Hint: speed of light is 3*10^8 m/s; leave the units off of your answer) Question 4 of 7 A Moving to another question will save this response. 1 6:59 & backs
The Algol binary system consists of a 3.7 Msun star and a 0.8 Msun star with an orbital period of 2.87 days.  Using Newton’s version of Kepler’s Third Law, calculate the distance, a, between the two stars.  Compare that to the size of Betelgeuse (you’ll need to look that up).   Newton’s Version of Kepler’s Law:    (M1 + M2) P2 = (4p2 /G) a3                     Rearrange the equation to solve for a. Pi, p, is equal to 3.14. IMPORTANT NOTE: Google the value of G (the Universal Gravitational Constant) or look it up in your text.  NOTICE THE UNITS.  You must convert every distance and time in your equation to the same units, otherwise, you’ll get an incorrect answer.  That means you must convert distances to meters, solar masses to kilograms, and time to seconds.   When you compare your value to the size of Betelgeuse, it will also help that they are in the same units.
Let us imagine that the spectrum of a star is collected and we find the absorption line of Hydrogen-Alpha (the deepest absorption line of hydrogen in the visible part of the electromagnetic spectrum) to be observed at 656.5 nm instead of 656.3 nm as measured in a lab here on Earth. What is the velocity of this star in m/s? (Hint: speed of light is 3*10^8 m/s; leave the units off of your answer)
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Text book image
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning