Principles of Instrumental Analysis
Principles of Instrumental Analysis
7th Edition
ISBN: 9781305577213
Author: Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 13, Problem 13.4QAP
Interpretation Introduction

(a)

Interpretation:

Theabsorbance of the solution for the percent transmittance for half of 5.38% is to be calculated.

Concept introduction:

The absorbance of the solution is the ability of the solution to absorb the monochromatic light passing through it. The absorbance of the solution is defined as the ratio of the intensity of light incident on the solution to the intensity of light absorbed by the solution.

The relation between the absorbance and transmittance of a solution is given by Beer’s law.

A=logT

Interpretation Introduction

(b)

Interpretation:

Theabsorbance of the solution for the percent transmittance for half of 0.492 is to be calculated.

Concept introduction:

The absorbance of the solution is the ability of the solution to absorb the monochromatic light passing through it. The absorbance of the solution is defined as the ratio of the intensity of light incident on the solution to the intensity of light absorbed by the solution.

The relation between the absorbance and transmittance of a solution is given by Beer’s law.

A=logT

Interpretation Introduction

(c)

Interpretation:

Theabsorbance of the solution for the percent transmittance of half of 39.4% is to be calculated.

Concept introduction:

The absorbance of the solution is the ability of the solution to absorb the monochromatic light passing through it. The absorbance of the solution is defined as the ratio of the intensity of light incident on the solution to the intensity of light absorbed by the solution.

The relation between the absorbance and transmittance of a solution is given by Beer’s law.

A=logT

Interpretation Introduction

(d)

Interpretation:

Theabsorbance of the solution for the percent transmittance for half of 23.8% is to be calculated.

Concept introduction:

The absorbance of the solution is the ability of the solution to absorb the monochromatic light passing through it. The absorbance of the solution is defined as the ratio of the intensity of light incident on the solution to the intensity of light absorbed by the solution.

The relation between the absorbance and transmittance of a solution is given by Beer’s law.

A=logT

Interpretation Introduction

(e)

Interpretation:

Theabsorbance of the solution for the percent transmittance for half of 0.124 is to be calculated.

Concept introduction:

The absorbance of the solution is the ability of the solution to absorb the monochromatic light passing through it. The absorbance of the solution is defined as the ratio of the intensity of light incident on the solution to the intensity of light absorbed by the solution.

The relation between the absorbance and transmittance of a solution is given by Beer’s law.

A=logT

Interpretation Introduction

(f)

Interpretation:

Theabsorbance of the solution for the percent transmittance of 15.8% is to be calculated.

Concept introduction:

The absorbance of the solution is the ability of the solution to absorb the monochromatic light passing through it. The absorbance of the solution is defined as the ratio of the intensity of light incident on the solution to the intensity of light absorbed by the solution.

The relation between the absorbance and transmittance of a solution is given by Beer’s law.

A=logT

Blurred answer
Students have asked these similar questions
Why should absorbance be less than 2?  Please explain in terms of light transmittance
A student prepared several solutions of Molecule Bright, each at a different concentration.  The absorbance of each solution was measured at 405 nm with a path length of 0.730 cm.  The student then plotted the absorbance of each sample vs. its concentration (in mM), and found a best-fit line of y = 3.726x + 0.828.  Calculate the molar absorptivity of the Molecule Bright (in M-1 cm-1).
3. A 2.50x10-4M solution of a dye has an absorbance of 0.680 when measured in a 1.00 cm cell at 625 nm. Calculate the %Transmittance of the solution. Will the %Transmittance increase or decrease if the concentration of the dye is increased.
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Fundamentals Of Analytical Chemistry
Chemistry
ISBN:9781285640686
Author:Skoog
Publisher:Cengage
Text book image
Macroscale and Microscale Organic Experiments
Chemistry
ISBN:9781305577190
Author:Kenneth L. Williamson, Katherine M. Masters
Publisher:Brooks Cole
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning