University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 13.27E
The star Rho1 Cancri is 57 light-years from the earth and has a mass 0.85 times that of our sun. A planet has been detected in a circular orbit around Rho1 Cancri with an orbital radius equal to 0.11 times the radius of the earth’s orbit around the sun. What are (a) the orbital speed and (b) the orbital period of the planet of Rho1 Cancri?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The star Rho1 Cancri is 57 light-years from the earth and has a mass 0.85 times that of our sun. A planet has been detected in a circular orbit around Rho1 Cancri with an orbital radius equal to 0.11 times the radius of the earth’s orbit around the sun. What are (a) the orbital speed and (b) the orbital period of the planet of Rho1 Cancri?
A planet has a mass of 5.98 x 10²4 kg. It has an average orbital speed of 2.978 x 104 m/s as it completes a
circular orbit. It takes 3.154 x 107 s to make one revolution. What is the average radius of the planet's
orbit around the star?
You are working at a summer internship for
NASA, working to study exoplanets (planets we
have detected around other stars). Calculate the
orbital radius (distance of the planet to the star)
of the newly detected planet Beta Sirius, if its'
orbital period around its star is 5.51 x 107 s.
You know from the data that the star has a
mass of 2.21 x 1029 kg, and a radius of 2.70 x
106 and the planet has a mass of 3.00 x 1022
kg.
Your Answer:
Answer
Chapter 13 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 13.1 - The planet Saturn has about 100 times the mass of...Ch. 13.2 - Rank the following hypothetical planets in order...Ch. 13.3 - Prob. 13.3TYUCh. 13.4 - Prob. 13.4TYUCh. 13.5 - The orbit of Comet X has a semi-major axis that is...Ch. 13.6 - In the classic 1913 science-fiction novel At the...Ch. 13.7 - Imagine a planet that has the same mass and radius...Ch. 13.8 - If the sun somehow collapsed to form a black hole,...Ch. 13 - A student wrote: The only reason an apple falls...Ch. 13 - If all planets had the same average density, how...
Ch. 13 - Is a pound of butler on the earth the same amount...Ch. 13 - Example 13.2 (Section 13.1) shows that the...Ch. 13 - When will you attract the sun more: today at noon,...Ch. 13 - Since the moon is constantly attracted toward the...Ch. 13 - Prob. 13.7DQCh. 13 - A planet makes a circular orbit with period T...Ch. 13 - The sun pulls on the moon with a force that is...Ch. 13 - Which takes more fuel: a voyage from the earth to...Ch. 13 - Prob. 13.11DQCh. 13 - Does the escape speed for an object at the earths...Ch. 13 - If a projectile is fired straight up from the...Ch. 13 - Discuss whether this statement is correct: In the...Ch. 13 - The earth is closer to the sun in November than in...Ch. 13 - A communications firm wants to place a satellite...Ch. 13 - Prob. 13.17DQCh. 13 - What would Keplers third law be for circular...Ch. 13 - In the elliptical orbit of Comet Hailey shown in...Ch. 13 - Many people believe that orbiting astronauts feel...Ch. 13 - As part of their training before going into orbit,...Ch. 13 - What is the ratio of the gravitational pull of the...Ch. 13 - CP Cavendish Experiment. In the Cavendish balance...Ch. 13 - Rendezvous in Space! A couple of astronauts agree...Ch. 13 - Two uniform spheres, each with mass M and radius...Ch. 13 - Two uniform spheres, each of mass 0.260 kg, are...Ch. 13 - Find the magnitude and direction of the net...Ch. 13 - A typical adult human has a mass of about 70 kg....Ch. 13 - An 8.00-kg point mass and a 12.0-kg point mass are...Ch. 13 - Prob. 13.9ECh. 13 - The point masses m and 2m lie along the x-axis,...Ch. 13 - At what distance above the surface of the earth is...Ch. 13 - The mass of Venus is 81.5% that of the earth, and...Ch. 13 - Titania, the largest moon of the planet Uranus,...Ch. 13 - Rhea, one of Saturns moons, has a radius of 764 km...Ch. 13 - Calculate the earths gravity force on a 75-kg...Ch. 13 - Prob. 13.16ECh. 13 - Use the results of Example 13.5 (Section 13.3) to...Ch. 13 - Ten days after it was launched toward Mars in...Ch. 13 - A planet orbiting a distant star has radius 3.24 ...Ch. 13 - Prob. 13.20ECh. 13 - Prob. 13.21ECh. 13 - Aura Mission. On July 15, 2004, NASA launched the...Ch. 13 - Two satellites are in circular orbits around a...Ch. 13 - International Space Station. In its orbit each...Ch. 13 - Prob. 13.25ECh. 13 - Prob. 13.26ECh. 13 - The star Rho1 Cancri is 57 light-years from the...Ch. 13 - In March 2006. two small satellites were...Ch. 13 - The dwarf planet Pluto has an elliptical orbit...Ch. 13 - Hot Jupiters. In 2004 astronomers reported the...Ch. 13 - Planets Beyond the Solar System. On October 15,...Ch. 13 - A uniform, spherical, 1000.0-kg shell has a radius...Ch. 13 - A uniform, solid, 1000.0-kg sphere has a radius of...Ch. 13 - CALC A thin, uniform rod has length L and mass M....Ch. 13 - Prob. 13.35ECh. 13 - A Visit to Santa. You decide to visit Santa Claus...Ch. 13 - The acceleration due to gravity at the north pole...Ch. 13 - Mini Black Holes. Cosmologists have speculated...Ch. 13 - Prob. 13.39ECh. 13 - In 2005 astronomers announced the discovery of a...Ch. 13 - Neutron stars, such as the one at the center of...Ch. 13 - Four identical masses of 8.00 kg each are placed...Ch. 13 - Three uniform spheres are fixed at the positions...Ch. 13 - CP Exploring Europa. There is strong evidence that...Ch. 13 - A uniform sphere with mass 50.0 kg is held with...Ch. 13 - Mission to Titan. On December 25, 2004, the...Ch. 13 - Prob. 13.47PCh. 13 - At a certain instant, the earth, the moon, and a...Ch. 13 - Prob. 13.49PCh. 13 - CP Submarines on Europa. Some scientists are eager...Ch. 13 - What is the escape speed from a 300-km-diameter...Ch. 13 - A landing craft with mass 12,500 kg is in a...Ch. 13 - Planet X rotates in the same manner as the earth,...Ch. 13 - (a) Suppose you are at the earths equator and...Ch. 13 - CP An astronaut, whose mission is to go where no...Ch. 13 - CP Your starship, the Aimless Wanderer, lands on...Ch. 13 - CP You are exploring a distant planet. When your...Ch. 13 - The 0.100-kg sphere in Fig. P13.58 is released...Ch. 13 - An unmanned spacecraft is in a circular orbit...Ch. 13 - Mass of a Comet. On July 4, 2005, the NASA...Ch. 13 - Falling Hammer. A hammer with mass m is dropped...Ch. 13 - Prob. 13.62PCh. 13 - Prob. 13.63PCh. 13 - Prob. 13.64PCh. 13 - Prob. 13.65PCh. 13 - The planet Uranus has a radius of 25,360 km and a...Ch. 13 - Prob. 13.67PCh. 13 - A rocket with mass 5.00 103 kg is in a circular...Ch. 13 - A 5000-kg spacecraft is in a circular orbit 2000...Ch. 13 - Prob. 13.70PCh. 13 - CALC Planets are not uniform inside. Normally,...Ch. 13 - One of the brightest comets of the 20th century...Ch. 13 - CALC An object in the shape of a thin ring has...Ch. 13 - CALC A uniform wire with mass M and length L is...Ch. 13 - Prob. 13.75PCh. 13 - DATA For each of the eight planets Mercury to...Ch. 13 - DATA For a spherical planet with mass M, volume V,...Ch. 13 - DATA For a planet in our solar system, assume that...Ch. 13 - Interplanetary Navigation. The most efficient way...Ch. 13 - CP Tidal Forces near a Black Hole. An astronaut...Ch. 13 - CALC Mass M is distributed uniformly over a disk...Ch. 13 - EXOPLANETS. As planets with a wide variety of...Ch. 13 - EXOPLANETS. As planets with a wide variety of...Ch. 13 - EXOPLANETS. As planets with a wide variety of...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The current in a series RL circuit increases to 20% of its final value in 3.1 s. If L = 1.8 mH, whats the resis...
Essential University Physics: Volume 2 (3rd Edition)
(a) Give an example of different net external forces acting on the same system to produce different acceleratio...
College Physics
In the circuit shown in Fig. 26–68, the 33-Ω resistor dissipates 0.80 W. What is the battery voltage?
FIGURE 26...
Physics for Scientists and Engineers with Modern Physics
46. Compote the equivalent resistance of the network in Figure 19.54, and find the current in each resistor. Th...
College Physics (10th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Model the Moons orbit around the Earth as an ellipse with the Earth at one focus. The Moons farthest distance (apogee) from the center of the Earth is rA = 4.05 108 m, and its closest distance (perigee) is rP = 3.63 108 m. a. Calculate the semimajor axis of the Moons orbit. b. How far is the Earth from the center of the Moons elliptical orbit? c. Use a scale such as 1 cm 108 m to sketch the EarthMoon system at apogee and at perigee and the Moons orbit. (The semiminor axis of the Moons orbit is roughly b = 3.84 108 m.)arrow_forwardCalculate the effective gravitational field vector g at Earths surface at the poles and the equator. Take account of the difference in the equatorial (6378 km) and polar (6357 km) radius as well as the centrifugal force. How well does the result agree with the difference calculated with the result g = 9.780356[1 + 0.0052885 sin 2 0.0000059 sin2(2)]m/s2 where is the latitude?arrow_forwardWhat is the orbital radius of an Earth satellite having a period of 1.00 h? (b) What is unreasonable about this result?arrow_forward
- The astronaut orbiting the Earth in Figure P3.27 is preparing to dock with a Westar VI satellite. The satellite is in a circular orbit 600 km above the Earth’s surface, where the free-fall acceleration is 8.21 m/s2. Take the radius of the Earth as 6 400 km. Determine the speed of the satellite and the time interval required to complete one orbit around the Earth, which is the period of the satellite. Figure P3.27arrow_forwardLet gM represent the difference in the gravitational fields produced by the Moon at the points on the Earths surface nearest to and farthest from the Moon. Find the fraction gM/g, where g is the Earths gravitational field. (This difference is responsible for the occurrence of the lunar tides on the Earth.)arrow_forwardThe Sun has a mass of approximately 1.99 1030 kg. a. Given that the Earth is on average about 1.50 1011 m from the Sun, what is the magnitude of the Suns gravitational field at this distance? b. Sketch the magnitude of the gravitational field due to the Sun as a function of distance from the Sun. Indicate the Earths position on your graph. Assume the radius of the Sun is 7.00 108 m and begin the graph there. c. Given that the mass of the Earth is 5.97 1024 kg, what is the magnitude of the gravitational force on the Earth due to the Sun?arrow_forward
- Planetary orbits are often approximated as uniform circular motion. Figure P7.9 is a scaled representation of a planets orbit with a semimajor axis of 1.524 AU. a. Use Figure P7.9 to find the ratio of the Suns maximum gravitational field to its minimum gravitational field on the planets orbit. b. What is the ratio of the planets maximum speed to its minimum speed? c. Comment on the validity of approximating this orbit as uniform circular motion.arrow_forwardTwo black holes (the remains of exploded stars), separated by a distance of 10.0 AU (1 AU = 1.50 1011 m), attract one another with a gravitational force of 8.90 1025 N. The combined mass of the two black holes is 4.00 1030 kg. What is the mass of each black hole?arrow_forwardAstronomical observatrions of our Milky Way galaxy indicate that it has a mass of about 8.01011 solar masses. A star orbiting on the galaxy’s periphery is about 6.0104 light-years from its center. (a) What should the orbital period of that star be? (b) If its period is 6.0107 years instead, what is the mass of the galaxy? Such calculations are used to imply the existence of other matter, such as a very massive black hole at the center of the Milky Way.arrow_forward
- A massive black hole is believed to exist at the center of our galaxy (and most other spiral galaxies). Since the 1990s, astronomers have been tracking the motions of several dozen stars in rapid motion around the center. Their motions give a clue to the size of this black hole. a. One of these stars is believed to be in an approximately circular orbit with a radius of about 1.50 103 AU and a period of approximately 30 yr. Use these numbers to determine the mass of the black hole around which this star is orbiting, b. What is the speed of this star, and how does it compare with the speed of the Earth in its orbit? How does it compare with the speed of light?arrow_forwardSaturns ring system forms a relatively thin, circular disk in the equatorial plane of the planet. The inner radius of the ring system is approximately 92,000 km from the center of the planet, and the outer edge is about 137,000 km from the center of the planet. The mass of Saturn itself is 5.68 1026 kg. a. What is the period of a particle in the outer edge compared with the period of a particle in the inner edge? b. How long does it take a particle in the inner edge to move once around Saturn? c. While this inner-edge particle is completing one orbit abound Saturn, how far around Saturn does a particle on the outer edge move?arrow_forwardFor many years, astronomer Percival Lowell searched for a Planet X that might explain some of the perturbations observed in the orbit of Uranus. These perturbations were later explained when the masses of the outer planets and planetoids, particularly Neptune, became better measured (Voyager 2). At the time, however, Lowell had proposed the existence of a Planet X that orbited the Sun with a mean distance of 43 AU. With what period would this Planet X orbit the Sun?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY