FLUID MECHANICS FUNDAMENTALS+APPS
4th Edition
ISBN: 9781259877766
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 12, Problem 99CP
To determine
Effect on type of flow and the mass flow rate of the fluid at the exit when the duct length is increased.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider supersonic Fanno flow that is decelerated to sonic velocity (Ma = 1) at the duct exit as a result of frictional effects. If the duct length is increased further, will the flow at the duct exit be supersonic, subsonic, or remain sonic? Will the mass flow rate of the fluid increase, decrease, or remain constant as a result of increasing the duct length?
Is it possible to accelerate a fluid to supersonic velocities with a velocity other than the sonic velocity at the throat? Explain
Consider subsonic Rayleigh flow that is accelerated to sonic velocity (Ma = 1) at the duct exit by heating. If the fluid continues to be heated, will the flow at duct exit be supersonic, subsonic, or remain sonic?
Chapter 12 Solutions
FLUID MECHANICS FUNDAMENTALS+APPS
Ch. 12 - What is dynamic temperature?Ch. 12 - Calculate the stagnation temperature and pressure...Ch. 12 - Prob. 6PCh. 12 - Prob. 7PCh. 12 - Prob. 8EPCh. 12 - Prob. 9PCh. 12 - Products of combustion enter a gas turbine with a...Ch. 12 - Is it possible to accelerate a gas to a supersonic...Ch. 12 - Prob. 72EPCh. 12 - Prob. 73P
Ch. 12 - Prob. 74PCh. 12 - Prob. 75PCh. 12 - For an ideal gas flowing through a normal shock,...Ch. 12 - Prob. 77CPCh. 12 - On a T-s diagram of Raleigh flow, what do the...Ch. 12 - What is the effect of heat gain and heat toss on...Ch. 12 - Prob. 80CPCh. 12 - Prob. 81CPCh. 12 - Prob. 82CPCh. 12 - Argon gas enters a constant cross-sectional area...Ch. 12 - Prob. 84EPCh. 12 - Prob. 85PCh. 12 - Prob. 86PCh. 12 - Prob. 87EPCh. 12 - Prob. 88PCh. 12 - Prob. 89PCh. 12 - Prob. 90PCh. 12 - Prob. 91PCh. 12 - Prob. 93CPCh. 12 - Prob. 94CPCh. 12 - Prob. 95CPCh. 12 - Prob. 96CPCh. 12 - Prob. 97CPCh. 12 - Prob. 98CPCh. 12 - Prob. 99CPCh. 12 - Prob. 100CPCh. 12 - Prob. 101PCh. 12 - Air enters a 5-cm-diameter, 4-m-long adiabatic...Ch. 12 - Helium gas with k=1.667 enters a 6-in-diameter...Ch. 12 - Air enters a 12-cm-diameter adiabatic duct at...Ch. 12 - Prob. 105PCh. 12 - Air flows through a 6-in-diameter, 50-ft-long...Ch. 12 - Air in a room at T0=300k and P0=100kPa is drawn...Ch. 12 - Prob. 110PCh. 12 - Prob. 112PCh. 12 - Prob. 113PCh. 12 - Prob. 114PCh. 12 - Prob. 115PCh. 12 - Prob. 116EPCh. 12 - A subsonic airplane is flying at a 5000-m altitude...Ch. 12 - Prob. 118PCh. 12 - Prob. 119PCh. 12 - Prob. 120PCh. 12 - Prob. 121PCh. 12 - Prob. 122PCh. 12 - Prob. 123PCh. 12 - An aircraft flies with a Mach number Ma1=0.9 at an...Ch. 12 - Prob. 125PCh. 12 - Helium expands in a nozzle from 220 psia, 740 R,...Ch. 12 - Prob. 127PCh. 12 - Prob. 128PCh. 12 - Prob. 129PCh. 12 - Prob. 130PCh. 12 - Prob. 131PCh. 12 - Prob. 132PCh. 12 - Prob. 133PCh. 12 - Prob. 134PCh. 12 - Prob. 135PCh. 12 - Prob. 136PCh. 12 - Prob. 137PCh. 12 - Prob. 138PCh. 12 - Air is cooled as it flows through a 30-cm-diameter...Ch. 12 - Prob. 140PCh. 12 - Prob. 141PCh. 12 - Prob. 142PCh. 12 - Prob. 145PCh. 12 - Prob. 148PCh. 12 - Prob. 149PCh. 12 - Prob. 150PCh. 12 - Prob. 151PCh. 12 - Prob. 153PCh. 12 - Prob. 154PCh. 12 - Prob. 155PCh. 12 - Prob. 156PCh. 12 - Prob. 157PCh. 12 - Prob. 158PCh. 12 - Prob. 159PCh. 12 - Prob. 160PCh. 12 - Prob. 161PCh. 12 - Prob. 162PCh. 12 - Assuming you have a thermometer and a device to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Consider subsonic Fanno flow of air with an inlet Mach number of 0.70. If the Mach number increases to 0.90 at the duct exit as a result of friction, will the (a) stagnation temperature T0, (b) stagnation pressure P0, and (c) entropy s of the fluid increase, decrease, or remain constant during this process?arrow_forwardConsider an aircraft engine operating at subsonic conditions with a nozzle that has an exit area of 142in2 and a nozzle inlet/exit area ratio of 2. Engine gases flowing at 30lbm/s enter the nozzle with a pressure of 0.83 bar and avelocity of 144 m/s. The gases expand through the nozzle, exiting at the ambient pressure of 7.25 psia with a velocity of 1320 ft/s. a) For these conditions, what is the force (in units of lbf) trasmitted to the structure holding the nozzle. Provide both direction and magnitude of the force. b) Based on your results, comment on whether the force acting on the nozzle would hlep speed up or slow down a vehicle that used this nozzle as part of a jet propulsion system. I mostly wanted help in part b. Thank you.arrow_forwardShow that the point of maximum entropy on the Fanno line for the adiabatic steady flow of a fluid in a duct corresponds to the sonic velocity, Ma = 1.arrow_forward
- A large vessel contains compressed air at To = 350 K and Po = 2 bar. A converging-diverging nozzle is attached to the vessel to discharge air. The throat area of the nozzle is 200 cm2. At the exit, the pressure is 20 kPa and the flow is supersonic. Answer the followings:arrow_forwardAir is heated as it flows subsonically through a 5 cm × 10 cm duct. The properties of air at the inlet are maintained at Ma1 = 0.6, P1 = 350 kPa, and T1 = 420 K at all times. Disregarding frictional losses, determine the highest rate of heat transfer to the air in the duct without affecting the inlet conditions. Take the properties of air to be k = 1.4, cp = 1.005 kJ/kg·K, and R = 0.287 kJ/kg·K. The highest rate of heat transfer to the air in the duct is___ kW.arrow_forwardAir is approaching a converging–diverging nozzle with a low velocity at 12°C and 200 kPa, and it leaves the nozzle at a supersonic velocity. The velocity of air at the throat of the nozzle is (a) 338 m/s (b) 309 m/s (c) 280 m/s (d ) 256 m/s (e) 95 m/sarrow_forward
- صالح حمدي محمود A supersonic fixed-geometry inlet is operating at sea level where the temperature and pressure are 310 K and 105 kPa, respectively. The Inlet and throat cross-sectional areas are 0.133 m² and 0.0726 m², respectively. Determine the Mach no. and mass-flow-rate for which the inlet is designed operated.arrow_forward1- Air enters a nozzle at 0.2 MPa, 350 K, and a stagnation velocity. Assuming isentropic flow, determine the pressure and temperature of air at a location where the air velocity equals the speed of sound. What is the ratio of the area at this location to the entrance area?arrow_forwardA gas initially at a supersonic velocity enters an adiabatic diverging duct. Discuss how this affects (a) the velocity, (b) the temperature, (c) the pressure, and (d ) the density of the fluid.arrow_forward
- Helium is heated as it flows subsonically through a 10 cm × 10 cm square duct. The properties of helium at the inlet are maintained at Ma1 = 0.6, P1 = 350 kPa, and T1 = 420 K at all times. Disregarding frictional losses, determine the highest rate of heat transfer to the air in the duct without affecting the inlet conditions.arrow_forwardA supersonic fixed-geometry inlet is operating at sea level where the temperature and pressure are 310 K and 105 kPa, respectively. The Inlet and throat cross-sectional areas are 0.133 m 2 and 0.0726 m 2 , respectively. Determine the Mach no. and mass-flow-rate for which the inlet is designed operated.arrow_forwardAir is heated as it flows subsonically through a duct. When the amount of heat transfer reaches 67 kJ/kg, the flow is observed to be choked, and the velocity and the static pressure are measured to be 680 m/s and 270 kPa. Disregarding frictional losses, determine the velocity, static temperature, and static pressure at the duct inlet.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License