FLUID MECHANICS FUNDAMENTALS+APPS
4th Edition
ISBN: 9781259877766
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 76P
For an ideal gas flowing through a normal shock, develop a relation for
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1- Air flows through a device such that the stagnation pressure is 0.6 MPa,
the stagnation temperature is 4008C, and the velocity is 570 m/s. Determine
the static pressure and temperature of the air at this state.
4-Steam flows through a device with a stagnation pressure of 120 psia, a
stagnation temperature of 7008F, and a velocity of 900 ft/s. Assuming ideal-
gas behavior, determine the static pressure and temperature of the steam at
this state.
In an ideal nozzle, the enthalpy change of the gas is 69.4 kJ/kg. Assuming the initial velocity is negligible what is the final velocity (Enter your answer to the nearest whole number of m/s)?
Chapter 12 Solutions
FLUID MECHANICS FUNDAMENTALS+APPS
Ch. 12 - What is dynamic temperature?Ch. 12 - Calculate the stagnation temperature and pressure...Ch. 12 - Prob. 6PCh. 12 - Prob. 7PCh. 12 - Prob. 8EPCh. 12 - Prob. 9PCh. 12 - Products of combustion enter a gas turbine with a...Ch. 12 - Is it possible to accelerate a gas to a supersonic...Ch. 12 - Prob. 72EPCh. 12 - Prob. 73P
Ch. 12 - Prob. 74PCh. 12 - Prob. 75PCh. 12 - For an ideal gas flowing through a normal shock,...Ch. 12 - Prob. 77CPCh. 12 - On a T-s diagram of Raleigh flow, what do the...Ch. 12 - What is the effect of heat gain and heat toss on...Ch. 12 - Prob. 80CPCh. 12 - Prob. 81CPCh. 12 - Prob. 82CPCh. 12 - Argon gas enters a constant cross-sectional area...Ch. 12 - Prob. 84EPCh. 12 - Prob. 85PCh. 12 - Prob. 86PCh. 12 - Prob. 87EPCh. 12 - Prob. 88PCh. 12 - Prob. 89PCh. 12 - Prob. 90PCh. 12 - Prob. 91PCh. 12 - Prob. 93CPCh. 12 - Prob. 94CPCh. 12 - Prob. 95CPCh. 12 - Prob. 96CPCh. 12 - Prob. 97CPCh. 12 - Prob. 98CPCh. 12 - Prob. 99CPCh. 12 - Prob. 100CPCh. 12 - Prob. 101PCh. 12 - Air enters a 5-cm-diameter, 4-m-long adiabatic...Ch. 12 - Helium gas with k=1.667 enters a 6-in-diameter...Ch. 12 - Air enters a 12-cm-diameter adiabatic duct at...Ch. 12 - Prob. 105PCh. 12 - Air flows through a 6-in-diameter, 50-ft-long...Ch. 12 - Air in a room at T0=300k and P0=100kPa is drawn...Ch. 12 - Prob. 110PCh. 12 - Prob. 112PCh. 12 - Prob. 113PCh. 12 - Prob. 114PCh. 12 - Prob. 115PCh. 12 - Prob. 116EPCh. 12 - A subsonic airplane is flying at a 5000-m altitude...Ch. 12 - Prob. 118PCh. 12 - Prob. 119PCh. 12 - Prob. 120PCh. 12 - Prob. 121PCh. 12 - Prob. 122PCh. 12 - Prob. 123PCh. 12 - An aircraft flies with a Mach number Ma1=0.9 at an...Ch. 12 - Prob. 125PCh. 12 - Helium expands in a nozzle from 220 psia, 740 R,...Ch. 12 - Prob. 127PCh. 12 - Prob. 128PCh. 12 - Prob. 129PCh. 12 - Prob. 130PCh. 12 - Prob. 131PCh. 12 - Prob. 132PCh. 12 - Prob. 133PCh. 12 - Prob. 134PCh. 12 - Prob. 135PCh. 12 - Prob. 136PCh. 12 - Prob. 137PCh. 12 - Prob. 138PCh. 12 - Air is cooled as it flows through a 30-cm-diameter...Ch. 12 - Prob. 140PCh. 12 - Prob. 141PCh. 12 - Prob. 142PCh. 12 - Prob. 145PCh. 12 - Prob. 148PCh. 12 - Prob. 149PCh. 12 - Prob. 150PCh. 12 - Prob. 151PCh. 12 - Prob. 153PCh. 12 - Prob. 154PCh. 12 - Prob. 155PCh. 12 - Prob. 156PCh. 12 - Prob. 157PCh. 12 - Prob. 158PCh. 12 - Prob. 159PCh. 12 - Prob. 160PCh. 12 - Prob. 161PCh. 12 - Prob. 162PCh. 12 - Assuming you have a thermometer and a device to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1- An ideal gas with k = 1.4 is flowing through a nozzle such that the Mach number is 2.4 where the flow area is 25 cm2. Assuming the flow to be isentropic, determine the flow area at the location where the Mach number is 1.2arrow_forward5arrow_forward4. Carbon dioxide flows steadily through a varying cross-sectional-area duct such as a nozzle at a mass flow rate of 3 kg/s. The carbon dioxide enters the duct at a pressure of 1400 kPa and 200°C with a low velocity, and it expands in the nozzle to a pressure of 200 kPa. The duct is designed so that the flow can be approximated as isentropic. Determine the following parameters at each location along the duct that corresponds to a pressure drop of 200 kPa: (i) density; (ii) velocity; (iii) flow area; (iv) mach number. You may assume: • Carbon dioxide is an ideal gas with constant specific heats at room temperature; • Flow through the duct is steady, one-dimensional and isentropic. Use cp=…arrow_forward
- A constant volume container holds 10 kg of air at a temperature of 20°C and a pressure of 150 kPa. The rough air is pressed and in the last case the pressure rises to 250 kPa and the temperature to 30°C. Calculate the mass of the compressed air. (The ideal gas constant value for air is 0.287 kJ/kgK.)arrow_forwardAn ideal gas at 27°C is compressed adiabatically to 8/27 of its original volume. The rise in temperature is (take, y = 5/3) (a) 475°C (c) 275°C (b) 150°C (d) 402°Carrow_forwardOutside air at a temperature of 25° C is drawn into the duct and then heated along the duct at 210 kJ/kg. At section 1 the temperature is T = 15°C and the absolute pressure is 98 kPa. Neglect friction. (Figure 1) Figure Fe 50 mm 1 of 1 Determine the Mach number at section 2. Express your answer using three significant figures. M₂ = 0.768 Submit Part B T2₂ = Correct Correct answer is shown. Your answer 0.7893 was either rounded differently or used a different number of significant figures than required for this part. Determine the temperature at section 2. Express your answer using three significant figures. Submit Part C Previous Answers P2 = Submit O 15| ΑΣΦ ↓↑ vec 1 Request Answer Determine the pressure at section 2. Express your answer to three significant figures and include the appropriate units. μA Value Request Answer C Units ? ? Karrow_forward
- (b) Air flows through a cylindrical duct at a rate of 2.3 kg/s. Friction between air and the duct and friction within air can be neglected. The diameter of the duct is 10cm and the air temperature and pressure at the inlet are T₁ 450 K and P₁ = 200 kPa. If the Mach number at the exit is Ma2 determine the rate of heat transfer and the pressure difference across the duct. The constant pressure specific heat of air is cp = 1.005 kJ/kg-K. The gas constant of air is R = 0.287 kJ/kg-K and assume k = 1.4. -arrow_forwardComplete solution and givenarrow_forwardArgon is accelerated in a nozzle from 32 m/s at 666 K to 441 m/s and 196 kPa. If the heat loss is equal to 5.1 kJ/kg, determine the gas temperature at outlet in K to 1 decimal place. Take the gas constant as 0.2 (kPa m3)/(kg K) and assume constant specific heats cp=0.5 kJ/(kg K) and cv=0.3 kJ/(kg K).arrow_forward
- an airstream with a velocity of 650 m/s static pressure of 222 kpa and a static temperature of 452 k undergoes a normal shock find 1- mach number and the velocity after the normal shock wave 2-the static conditions after the normal shock wave 3-the stagnation conditions after the normal shock wave 4-the entropy change across the normal shock wavearrow_forwardN2 enters a steady-flow heat exchanger at 150 kPa, 10°C, and 100 m/s, and it receives heat in the amount of 120 k/kg as it flows through it. The gas leaves the heat exchanger at 100 kPa with a velocity of 200 m/s. Determine the Mach number of the nitrogen at the inlet and the exit of the heat exchanger.arrow_forwardAnswer is 0.97 can you tell me how it came ?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamics: Maxwell relations proofs 1 (from ; Author: lseinjr1;https://www.youtube.com/watch?v=MNusZ2C3VFw;License: Standard Youtube License