Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 41AP
To determine
The forces
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In the figure, a uniform beam of length 13.5 m is supported by a horizontal cable and a hinge at angle θ = 54.8°. The tension in the cable is 423 N. What are (a) the x-component and (b) the y-component of the gravitational force on the beam? What are (c) the x-component and (d) the y-component of the force on the beam from the hinge?
A uniform plank 6.0 m long rests on two supports,2.5 m apart (Fig.P12.44).The gravitational force on the plank is 100 N.The left end of the plank is 1.5 m to the left of the left support,so the plank is not centered on the supports.A persom is standing on the plank half a meter to the right of the right support.The gravitational force on this person is 80.0 N.How far to right can the person walk before the plank begins to tip?
A person pushing a horizontal, uniformly loaded, 26.90 kg26.90 kg wheelbarrow of length ?L is attempting to get it over a step of height ℎ=0.470?,h=0.470R, where ?R is the wheel's radius. The center of gravity of the wheelbarrow is in the center of the wheelbarrow. What is the horizontal component ??Px of the minimum force ?⃗ P→ necessary to push the wheelbarrow over the step?
Chapter 12 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 12.1 - Consider the object subject to the two forces of...Ch. 12.1 - Consider the object subject to the three forces in...Ch. 12.2 - A meterstick of uniform density is hung from a...Ch. 12.4 - For the three parts of this Quick Quiz, choose...Ch. 12 - Prob. 1OQCh. 12 - Prob. 2OQCh. 12 - Prob. 3OQCh. 12 - Prob. 4OQCh. 12 - In the cabin of a ship, a soda can rests in a...Ch. 12 - Prob. 6OQ
Ch. 12 - Prob. 7OQCh. 12 - Prob. 8OQCh. 12 - Prob. 9OQCh. 12 - Prob. 10OQCh. 12 - Prob. 1CQCh. 12 - Prob. 2CQCh. 12 - Prob. 3CQCh. 12 - Prob. 4CQCh. 12 - Prob. 5CQCh. 12 - Prob. 6CQCh. 12 - Prob. 7CQCh. 12 - What kind of deformation does a cube of Jell-O...Ch. 12 - Prob. 1PCh. 12 - Why is the following situation impossible? A...Ch. 12 - Prob. 3PCh. 12 - Prob. 4PCh. 12 - Your brother is opening a skateboard shop. He has...Ch. 12 - A circular pizza of radius R has a circular piece...Ch. 12 - Prob. 7PCh. 12 - Prob. 8PCh. 12 - Prob. 9PCh. 12 - Prob. 10PCh. 12 - A uniform beam of length 7.60 m and weight 4.50 ...Ch. 12 - Prob. 12PCh. 12 - Prob. 13PCh. 12 - A uniform ladder of length L and mass m1 rests...Ch. 12 - A flexible chain weighing 40.0 N hangs between two...Ch. 12 - A uniform beam of length L and mass m shown in...Ch. 12 - Figure P12.13 shows a claw hammer being used to...Ch. 12 - A 20.0-kg floodlight in a park is supported at the...Ch. 12 - Prob. 19PCh. 12 - Review. While Lost-a-Lot ponders his next move in...Ch. 12 - John is pushing his daughter Rachel in a...Ch. 12 - Prob. 22PCh. 12 - Prob. 23PCh. 12 - A 10.0-kg monkey climbs a uniform ladder with...Ch. 12 - Prob. 25PCh. 12 - A steel wire of diameter 1 mm can support a...Ch. 12 - The deepest point in the ocean is in the Mariana...Ch. 12 - Assume Youngs modulus for bone is 1.50 1010 N/m2....Ch. 12 - A child slides across a floor in a pair of...Ch. 12 - Evaluate Youngs modulus for the material whose...Ch. 12 - Prob. 31PCh. 12 - When water freezes, it expands by about 9.00%....Ch. 12 - Prob. 33PCh. 12 - Prob. 34PCh. 12 - Prob. 35PCh. 12 - Review. A 30.0-kg hammer, moving with speed 20.0...Ch. 12 - A bridge of length 50.0 m and mass 8.00 104 kg is...Ch. 12 - A uniform beam resting on two pivots has a length...Ch. 12 - Prob. 39APCh. 12 - The lintel of prestressed reinforced concrete in...Ch. 12 - Prob. 41APCh. 12 - When a person stands on tiptoe on one foot (a...Ch. 12 - A hungry bear weighing 700 N walks out on a beam...Ch. 12 - Prob. 44APCh. 12 - A uniform sign of weight Fg and width 2L hangs...Ch. 12 - Prob. 46APCh. 12 - Prob. 47APCh. 12 - Assume a person bends forward to lift a load with...Ch. 12 - A 10 000-N shark is supported by a rope attached...Ch. 12 - Prob. 50APCh. 12 - A uniform beam of mass m is inclined at an angle ...Ch. 12 - Prob. 52APCh. 12 - When a circus performer performing on the rings...Ch. 12 - Figure P12.38 shows a light truss formed from...Ch. 12 - Prob. 55APCh. 12 - A stepladder of negligible weight is constructed...Ch. 12 - A stepladder of negligible weight is constructed...Ch. 12 - Prob. 58APCh. 12 - Two racquetballs, each having a mass of 170 g, are...Ch. 12 - Review. A wire of length L, Youngs modulus Y, and...Ch. 12 - Review. An aluminum wire is 0.850 m long and has a...Ch. 12 - Prob. 62APCh. 12 - A 500-N uniform rectangular sign 4.00 m wide and...Ch. 12 - A steel cable 3.00 cm2 in cross-sectional area has...Ch. 12 - Prob. 65CPCh. 12 - In the What If? section of Example 12.2, let d...Ch. 12 - Prob. 67CPCh. 12 - A uniform rod of weight Fg and length L is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Why is the following situation impossible? A uniform beam of mass mk = 3.00 kg and length = 1.00 m supports blocks with masses m1 = 5.00 kg and m2 = 15.0 kg at two positions as shown in Figure P12.2. The beam rests on two triangular blocks, with point P a distance d = 0.300 m to the right of the center of gravity of the beam. The position of the object of mass m2 is adjusted along the length of the beam until the normal force on the beam at O is zero. Figure P12.2arrow_forwardFind the net torque on the wheel in Figure P10.23 about the axle through O, taking a = 10.0 cm and b = 25.0 cm. Figure P10.23arrow_forwardJohn is pushing his daughter Rachel in a wheelbarrow when it is stopped by a brick 8.00 cm high (Fig. P12.15). The handles make an angle of = 15.0 with the ground. Due to the weight of Rachel and the wheelbarrow, a downward force of 400 N is exerted at the center of the wheel, which has a radius of 20.0 cm. (a) What force must John apply along the handles to just start the wheel over the brick? (b) What is the force (magnitude and direction) that the brick exerts on the wheel just as the wheel begins to lift over the brick? In both parts, assume the brick remains fixed and does not slide along the ground. Also assume the force applied by John is directed exactly toward the center of the wheel.arrow_forward
- A person carries a plank of wood 2.00 m long with one hand pushing down on it at one end with a force F1 and the other hand holding it up at .500 m from the end of the plank with force F2. If the plank has a mass of 20.0 kg and its center of gravity is at the middle of the plank, what are the magnitudes of the forces F1 and F2?arrow_forwardA disk with a radius of 4.5 m has a 100-N force applied to its outer edge at two different angles (Fig. P12.55). The disk has arotational inertia of 165 kg m2. a. What is the magnitude of the torque applied to the disk incase 1? b. What is the magnitude of the torque applied to the disk incase 2? c. Assuming the force on the disk is constant in each case,what is the magnitude of the angular acceleration applied tothe disk in each case? d. Which case is a more effective way of spinning the disk?Describe which quantity you are using to determine effectiveness and why you chose that quantity. FIGURE P12.55arrow_forwardA square plate with sides 2.0 m in length can rotatearound an axle passingthrough its center of mass(CM) and perpendicular toits surface (Fig. P12.53). There are four forces acting on the plate at differentpoints. The rotational inertia of the plate is 24 kg m2. Use the values given in the figure to answer the following questions. a. Whatis the net torque acting onthe plate? b. What is theangular acceleration of the plate? FIGURE P12.53 Problems 53 and 54.arrow_forward
- When a circus performer performing on the rings executes the iron cross, he maintains the position at rest shown in Figure P12.37a. In this maneuver, the gymnasts feet (not shown) are off the floor. The primary muscles involved in supporting this position are the latissimus dorsi (lats) and the pectoralis major (pecs). One of the rings exerts an upward force Fk on a hand as show n in Figure P12.37b. The force Fs, is exerted by the shoulder joint on the arm. The latissimus dorsi and pectoralis major muscles exert a total force Fm on the arm. (a) Using the information in the figure, find the magnitude of the force Fm for an athlete of weight 750 N. (b) Suppose a performer in training cannot perform the iron cross but can hold a position similar to the figure in which the arms make a 45 angle with the horizontal rather than being horizontal. Why is this position easier for the performer? Figure P12.37arrow_forwardA massless, horizontal beam of length L and a massless rope support a sign of mass m (Fig. P14.78). a. What is the tension in the rope? b. In terms of m, g, d, L, and , what are the components of the force exerted by the beam on the wall? FIGURE P14.78arrow_forwardRuby, with mass 55.0 kg, is trying to reach a box on a high shelf by standing on her tiptoes. In this position, half her weight is supported by the normal force exerted by the floor on the toes of each foot as shown in Figure P14.75A. This situation can be modeled mechanically by representing the force on Rubys Achilles tendon with FA and the force on her tibia as FT as shown in Figure P14.75B. What is the value of the angle and the magnitudes of the forces FA and FT? FIGURE P14.75arrow_forward
- One end of a uniform meter stick is placed against a vertical wall. The other end is held by a lightweight cord that makes an angle theta with the stick. The coefficient of static friction between the end of the meter stick and the wall is 0.400. Set up equations for net force and net torque and then find the maximum value theta can have if the stick is to remain at equilibrium.arrow_forwardA person pushing a horizontal, uniformly loaded, 27.15 kg27.15 kg wheelbarrow of length ?L is attempting to get it over a step of height ℎ=0.370?,h=0.370R, where ?R is the wheel's radius. The center of gravity of the wheelbarrow is in the center of the wheelbarrow. What is the horizontal component ??Px of the minimum force ?⃗ P→ necessary to push the wheelbarrow over the step? The gravitational acceleration is ?=9.81 m/s2.arrow_forwardA man holds a 198-N ball in his hand, with the forearm horizontal (see the figure). He can support the ball in this position because of the flexor muscle force line M , which is applied perpendicular to the forearm. The forearm weighs 24.4 N and has a center of gravity as indicated. Find (a) the magnitude of line M and the (b) magnitude and (c) direction (as a positive angle counterclockwise from horizontal) of the force applied by the upper arm bone to the forearm at the elbow joint.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College