Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 36P
A crane in a marble quarry is mounted on the quarry’s rock walls and is supporting a 2500-kg marble slab as shown in Fig. 12.26. The center of mass of the 830-kg boom is located one-third of the way from the pivot end of its 15-m length, as shown. Find the tension in the horizontal cable that supports the boom.
FIGURE 12.26 Problem 36
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 1220N uniform boom is supported by a cable perpendicular to the boom, as seen in the figure below.
The boom is hinged at the bottom, and an m=2120N weight hangs from its top. Assume the angles to
be a=60.7deg and 0=(90.0°- a).
Ꮎ
Ө
ja
m
Find the tension in the supporting cable.
Submit Answer Tries 0/10
Find the x-components of the reaction force exerted on the boom by the hinge (choose to the right as
positive).
Submit Answer Tries 0/10
Find the y-components of the reaction force exerted on the boom by the hinge (choose upwards as
positive).
Submit Answer Tries 0/10
11.13 Find the
。
sion
direction of the force exerted on the strut by the pivot in each of
the arrangements in Fig. E11.13. In each case let w be the weight
of the suspended crate full of priceless art objects. The strut is uni-
form and also has weight w. Start each case with a free-body dia-
gram of the strut.
Figure E11.13
(a)
(b)
30.0⁰
45.0°
30.0°
A 12.0-m boom, AB, of a crane lifting a 3000-kg load is shown below. The center of mass of the boom is at its geometric center, and the mass of the boom is 1000 kg. For the position shown, calculate tension T in the cable and the force at the axle A.
Chapter 12 Solutions
Essential University Physics (3rd Edition)
Ch. 12.1 - The figure shows three pairs of forces acting on...Ch. 12.2 - Prob. 12.2GICh. 12.3 - The figure shows a person in static equilibrium...Ch. 12.4 - Prob. 12.4GICh. 12 - Give an example of an object on which the net...Ch. 12 - Give an example of an object on which the net...Ch. 12 - Prob. 3FTDCh. 12 - Pregnant women often assume a posture with their...Ch. 12 - When you carry a bucket of water with one hand,...Ch. 12 - Is a ladder more likely to slip when you stand...
Ch. 12 - How does a heavy keel help keep a boat from...Ch. 12 - Does choosing a pivot point in an equilibrium...Ch. 12 - If you take the pivot point at the application...Ch. 12 - A short dog and a tall person are standing on a...Ch. 12 - Prob. 11FTDCh. 12 - A body is subject to three forces; F1=1i+2jN,...Ch. 12 - To demonstrate that the choice of pivot point...Ch. 12 - In Fig. 12.11 the forces shown all have the same...Ch. 12 - Figure 12.12a shows a thin, uniform square plate...Ch. 12 - Repeat the preceding problem for the equilateral...Ch. 12 - A 23-m-long log of irregular cross section lies...Ch. 12 - A 60-kg uniform board 2.4 m long is supported by a...Ch. 12 - Where should the child in Fig. 12.14 sit if the...Ch. 12 - A 4.2-m-long beam is supported by a cable at its...Ch. 12 - Figure 12.15 shows how a scale with a capacity of...Ch. 12 - A portion of a roller-coaster track is described...Ch. 12 - Prob. 23ECh. 12 - Youre a highway safety engineer, and youre asked...Ch. 12 - Figure 12.17a shows an outstretched arm with mass...Ch. 12 - A uniform sphere of radius R is supported by a...Ch. 12 - You work for a garden equipment company, and youre...Ch. 12 - Figure 12.20 shows the fool and lower leg of a...Ch. 12 - A uniform 5.0-kg ladder is leaning against a...Ch. 12 - The boom in the crane of Fig. 12.21 is free to...Ch. 12 - A uniform board of length L and weight W is...Ch. 12 - Figure 12.23 shows a 1250-kg car that has slipped...Ch. 12 - Repeat Example 12.2, now assuming that the...Ch. 12 - You are headwaiter at a new restaurant, and your...Ch. 12 - Climbers attempting to cross a stream place a...Ch. 12 - A crane in a marble quarry is mounted on the...Ch. 12 - A rectangular block measures w w L, where L is...Ch. 12 - The potential energy as a function of position for...Ch. 12 - A rectangular block of mass m measures w w L,...Ch. 12 - A 160-kg highway sign of uniform density is 2.3 m...Ch. 12 - A 5.0-m-long ladder has mass 9.5 kg and is leaning...Ch. 12 - Prob. 42PCh. 12 - A uniform, solid cube of mass m and side s is in...Ch. 12 - An isosceles triangular block of mass m and height...Ch. 12 - Youre investigating ladder safety for the Consumer...Ch. 12 - A 2.0-m-long rod has density in kilograms per...Ch. 12 - What horizontal force applied at its highest point...Ch. 12 - A rectangular block twice as high as it is wide is...Ch. 12 - What condition on the coefficient of friction in...Ch. 12 - A uniform solid cone of height h and base diameter...Ch. 12 - Prove the statement in Section 12.1 that the...Ch. 12 - Three identical books of length L are stacked over...Ch. 12 - A uniform pole of mass M is at rest on an incline...Ch. 12 - For what angle does the situation in Problem 53...Ch. 12 - Figure 12.31 shows a popular system for mounting...Ch. 12 - The nuchal ligament is a thick, cordlike structure...Ch. 12 - A 4.2-kg plant hangs from the bracket shown in...Ch. 12 - The wheel in Fig. 12.34 has mass M and is weighted...Ch. 12 - An interstellar spacecraft from an advanced...Ch. 12 - Youre called to testify in a product liability...Ch. 12 - Youre designing a vacation cabin at a ski resort....Ch. 12 - Prob. 62PCh. 12 - Engineers designing a new semiconductor device...Ch. 12 - Youve been hired by your states environmental...Ch. 12 - Youve been hired by your states environmental...Ch. 12 - Youve been hired by your states environmental...Ch. 12 - Youve been hired by your states environmental...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The acceleration, when the force is halved.
College Physics: A Strategic Approach (3rd Edition)
25.6 Polarization and light reflection
40.* A beam of unpolarized light with intensity is incident on a pair o...
College Physics
Express the unit vectors in terms of (that is, derive Eq. 1.64). Check your answers several ways Also work o...
Introduction to Electrodynamics
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
What order is necessary to resolve 647.98-nm and 648.07-nm spectral lines using a 4500-line grating?
Essential University Physics: Volume 2 (3rd Edition)
l. Suppose you have the uniformly charged cube in FIGURE Q24.1. Can you use symmetry alone to deduce the shape ...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A uniform, 8.0-m, 1500-kg beam is hinged to a wall and supported by a thin cable attached 2.0 m from the free end of the beam. The beam is supported at an angle of 30° above the horizontal. (a) find the tension in the cable and (b) how hard does the beam push inward on the wall?arrow_forwardA horizontal plank 4.00 m long and having mass 20.0 kg restson two supports, one at the left end of the plank and a second1.00 m from the right end of the plank. What is the magnitude of theforce exerted on the plank by the support on the right side?arrow_forwardA homeowner is trying to move a stubborn rock from his yard. By using a a metal rod as a lever arm and a fulcrum (or pivot point) the homeowner will have a better chance of moving the rock. The homeowner places the fulcrum a distance ?=0.288 mfrom the rock, which has a mass of 465 kg, and fits one end of the rod under the rock's center of weight. If the homeowner can apply a maximum force of 671 N at the other end of the rod, what is the minimum total length ? of the rod required to move the rock? Assume that the rod is massless and nearly horizontal so that the weight of the rock and homeowner's force are both essentially vertical. The acceleration due to gravity is ?=9.81 m/s2.arrow_forward
- A man holds a 171, N ball in his hand, with the forearm horizontal. He can support the ball in this position because the flexor muscle force, which is appliedperpendicular to the forearm. The forearm weighs 19.3 N and has a center of gravity as indicated. Find the magnitude of M.arrow_forwardA uniform bridge span weighs 50 103 N and is 40.0 m long. An automobile weighing 15 103N is parked with its center of gravity located 12.0 m from the right pier. Where is the center of mass of the bridge-automobile combination located as measured from the left pier?arrow_forwardAn individual leans forwards to pick up a box of 100 N. The weight of his upper body has a magnitude of 450 N. The back is pivoting around the base of the vertebral column. Consider the back of the individual as a rigid bar that is controlled by a muscle with an angle of 12° (See picture, d = trunk-head distance = 1 m).a) Calculate the magnitude of muscle force required to lift the box.b) Calculate the magnitude of the force at the base of the vertebral column. Hints: For (a) solve the equilibrium of moments, i.e. what force is required in the muscle to balance out the moments acting around the base of the spine.For (b), solve the equilibrium of forces acting on the spine, including the muscle force you’ve just calculated, in x and y separately. There are two extra forces not shown in the diagram: x and y contact forces acting at the base of the spine. These are whatever is needed to keep the total forces acting on the spine = 0 (so the spine isn’t accelerating off in some…arrow_forward
- A 72.0-kg weightlifter doing arm raises holds a 7.50-kg weight. Her arm pivots around the elbow joint, starting 40.0° below the horizontal (Fig. P11.54). Biometric measurements have shown that, together, the forearms and the hands account for 6.00% of a person’s weight. Since the upper arm is held vertically, the biceps muscle always acts verti-cally and is attached to the bones of the forearm 5.50 cm from the elbow joint. The center of mass of this person’s forearm–hand combination is 16.0 cm from the elbow joint, along the bones of the forearm, and she holds the weight 38.0 cm from her elbow joint. (a) Draw a free-body diagram of the forearm. (b) What force does the biceps muscle exert on the forearm? (c) Find the magni-tude and direction of the force that the elbow joint exerts on the forearm. (d) As the weightlifter raises her arm toward a horizontal position, will the force in the biceps muscle increase, decrease, or stay the same? Why? Solve A B C D and show complete solutionarrow_forwardDA man holds a 178-N ball in his hand, with the arm bone- 22. Upper - rlexor muscle forcarm horizontal (sce the draw- ing). He can support the ball in this position because of the flexor muscle force M, which is applied perpendicular to the forearm. The forearm weighs 22.0 N and has a center of gravity as indicated. Find (a) the magnitude of M and (b) the magnitude and direction of the force applied by the upper arm bone to the forearm at the elbow joint. Elbow cg joint '0.0890 m -0.330 m- 0.0510 marrow_forwardIn the strict curl weightlifting event, a standing athlete lifts a barbell using only their lower arms, hinging at the elbow. The record weight is 900N. The biceps tendon connects 4.00cm from the elbow and pulls straight up, while the barbell is held 35.0cm from the elbow. Assume the weight of the forearm is negligible, and that each arm supports half the weight of the barbell. A) What is the tension in the tendon connecting the bicep to the forearm while held stationary in the position shown? B) What is the force (magnitude and direction) of the upp arm pushing on the forearm at the elbow joint?arrow_forward
- A uniform beam is 5.00 m long and has a mass of 53.0 kg. The beam is supported in a horizontal position by a hinge and a cable, with angle ? = 115°.(a) Draw all the forces acting on the beam.(b) What Newton’s Law will you use to solve this problem?(c) What is the tension ?? on the cable?(d) What are the magnitude of the vertical and horizontalforces acting on the hinge ???(e) What is the magnitude and direction of the torque ??exerted by the tension on the cable?arrow_forwardSubject: physarrow_forwardA uniform plank 8.00 m in length with mass 65.0 kg is supported at two points located 1.00 m and 5.00 m, respectively, from the left-hand end. What is the maximum additional mass you could place on the right-hand end of the plank and have the plank still be at rest?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Static Equilibrium: concept; Author: Jennifer Cash;https://www.youtube.com/watch?v=0BIgFKVnlBU;License: Standard YouTube License, CC-BY