Concept explainers
When a person stands on tiptoe on one foot (a strenuous position), the position of the foot is as shown in Figure P12.32a. The total gravitational force
Figure P12.32
Trending nowThis is a popular solution!
Chapter 12 Solutions
Physics for Scientists and Engineers with Modern Physics
- When a circus performer performing on the rings executes the iron cross, he maintains the position at rest shown in Figure P12.37a. In this maneuver, the gymnasts feet (not shown) are off the floor. The primary muscles involved in supporting this position are the latissimus dorsi (lats) and the pectoralis major (pecs). One of the rings exerts an upward force Fk on a hand as show n in Figure P12.37b. The force Fs, is exerted by the shoulder joint on the arm. The latissimus dorsi and pectoralis major muscles exert a total force Fm on the arm. (a) Using the information in the figure, find the magnitude of the force Fm for an athlete of weight 750 N. (b) Suppose a performer in training cannot perform the iron cross but can hold a position similar to the figure in which the arms make a 45 angle with the horizontal rather than being horizontal. Why is this position easier for the performer? Figure P12.37arrow_forwardWhy is the following situation impossible? A worker in a factory pulls a cabinet across the floor using a rope as shown in Figure P12.36a. The rope make an angle = 37.0 with the floor and is tied h1 = 10.0 cm from the bottom of the cabinet. The uniform rectangular cabinet has height = 100 cm and width w = 60.0 cm, and it weighs 400 N. The cabinet slides with constant speed when a force F = 300 N is applied through the rope. The worker tires of walking backward. He fastens the rope to a point on the cabinet h2 = 65.0 cm off the floor and lays the rope over his shoulder so that he can walk forward and pull as shown in Figure P12.36b. In this way, the rope again makes an angle of = 37.0 with the horizontal and again has a tension of 300 N. Using this technique, the worker is able to slide the cabinet over a long distance on the floor without tiring. Figure P12.36 Problems 36 and 44.arrow_forwardChildren playing pirates have suspended a uniform wooden plank with mass 15.0 kg and length 2.50 m as shown in Figure P14.27. What is the tension in each of the three ropes when Sophia, with a mass of 23.0 kg, is made to walk the plank and is 1.50 m from reaching the end of the plank? FIGURE P14.27arrow_forward
- A 215-kg robotic arm at an assembly plant is extended horizontally (Fig. P14.32). The massless support rope attached at point B makes an angle of 15.0 with the horizontal, and the center of mass of the arm is at point C. a. What is the tension in the support rope? b. What are the magnitude and direction of the force exerted by the hinge A on the robotic arm to keep the arm in the horizontal position? FIGURE P14.32arrow_forwardA uniform beam resting on two pivots has a length L = 6.00 m and mass M = 90.0 kg. The pivot under the left end exerts a normal force n1 on the beam, and the second pivot located a distance = 4.00 m from the left end exerts a normal force n2. A woman of mass m = 55.0 kg steps onto the left end of the beam and begins walking to the right as in Figure P10.28. The goal is to find the womans position when the beam begins to tip. (a) What is the appropriate analysis model for the beam before it begins to tip? (b) Sketch a force diagram for the beam, labeling the gravitational and normal forces acting on the beam and placing the woman a distance x to the right of the first pivot, which is the origin. (c) Where is the woman when the normal force n1 is the greatest? (d) What is n1 when the beam is about to tip? (e) Use Equation 10.27 to find the value of n2 when the beam is about to tip. (f) Using the result of part (d) and Equation 10.28, with torques computed around the second pivot, find the womans position x when the beam is about to tip. (g) Check the answer to part (e) by computing torques around the first pivot point. Figure P10.28arrow_forwardA square plate with sides 2.0 m in length can rotatearound an axle passingthrough its center of mass(CM) and perpendicular toits surface (Fig. P12.53). There are four forces acting on the plate at differentpoints. The rotational inertia of the plate is 24 kg m2. Use the values given in the figure to answer the following questions. a. Whatis the net torque acting onthe plate? b. What is theangular acceleration of the plate? FIGURE P12.53 Problems 53 and 54.arrow_forward
- A square plate with sides of length 4.0 m can rotate about an axle passing through its center of mass and perpendicular to the plate as shown in Figure P14.36. There are four forces acting on the plate at different points. The rotational inertia of the plate is 24 kgm2. Is the plate in equilibrium? FIGURE P14.36arrow_forwardA massless, horizontal beam of length L and a massless rope support a sign of mass m (Fig. P14.78). a. What is the tension in the rope? b. In terms of m, g, d, L, and , what are the components of the force exerted by the beam on the wall? FIGURE P14.78arrow_forward8₁ 02 9. The diagram of the leg shows the femur (1) and tibia (2). The quadriceps muscle (3) applies a force to the lower leg via a tendon (4) that is embedded with the kneecap (5). If the force applied by the muscle to the tendon is F 570 N, what is the force of the femur on the kneecap, if the leg is in equilibrium? A simplified model of the leg is shown next to the diagram. The leg bones are represented by two beams attached by a pin. The tendon is modelled by a rope and the kneecap acts like a pulley. The tendon above the kneecap makes an angle 8, = 38° with respect to the vertical, and the portion of the tendon below the kneecap makes an angle of 6₂ = 10° with respect to the vertical. Enter the x component, followed by the y component. Answer 1 of 2: Answer 2 of 2: Submit All Answersarrow_forward
- When a person stands on tiptoe (a strenuous position), the position of the foot is as shown in Figure a. The total gravitational force on the body, F, is supported by the force n exerted by the floor on the toes of one foot. A mechanical model of the situation is shown in Figure b, where T is the force exerted by the Achilles tendon on the foot and R is the force exerted by the tibia on the foot. Find the values of T, R, and e when F, = n = 675 N. (For e, enter the smaller of the two possible values between 0° and 90°.) Achilles tendon Tibia 15.0° 18.0 cm 25.0 cm T = N R = N Need Help? Read Itarrow_forwardWhen a person stands on tiptoe (a strenuous position), the position of the foot is as shown in Figure a. The total gravitational force on the body, F, is supported by the force n exerted by the floor on the toes of one foot. A mechanical model of the situation is shown in Figure b, where T is the force exerted by the Achilles tendon on the foot and R is the force exerted by the tibia on the foot. Find the values of T, R, and 0 when F, = n = 720 N. (For 0, enter the smaller of the two possible values between 0° and 90°.) -Achilles tendon Tibia 15.0° 18.0 cm 25.0 cm a T = R = N z z oarrow_forwardA hiker, who weighs 659 N, is strolling through the woods and crosses a small horizontal bridge. The bridge is uniform, weighs 4280 N, and rests on two concrete supports, one on each end. He stops 1/5 of the way along the bridge. What is the magnitude of the force that a concrete support exerts on the bridge (a) at the near end and (b) at the far end?arrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning