Thermodynamics: An Engineering Approach
9th Edition
ISBN: 9781259822674
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1.11, Problem 97RP
A vertical, frictionless piston–cylinder device contains a gas at 180 kPa absolute pressure. The atmospheric pressure outside is 100 kPa, and the piston area is 25 cm2. Determine the mass of the piston.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
14.10. A liquor containing 15 per cent
solids is concentrated to 55 per cent
solids in a double-effect evaporator.
operating at a pressure in the second
effect of 18 kN/m². No crystals are
formed. The flowrate of feed is 2.5 kg/
s at 375 K with a specific heat capacity
of 3.75 kJ/kg K. The boiling-point rise of
the concentrated liquor is 6 deg K and the
steam fed to the first effect is at 240 kN/
m². The overall heat transfer coefficients
in the first and second effects are 1.8 and
0.63 kW/m²K. respectively. If the heat
transfer area is to be the same in each
effect, what areas should be specified?
D
A
14.9. A forward feed double-effect vertical
evaporator, with equal heating areas in
each effect, is fed with 5 kg/s of a liquor
of specific heat capacity of 4.18 kJ/kg K.
and with no boiling point rise, so that 50
per cent of the feed liquor is evaporated.
The overall heat transfer coefficient in the
second effect is 75 per cent of that in the
first effect. Steam is fed at 395 K and the
boiling point in the second effect is 373 K.
The feed is heated by an external heater to
the boiling point in the first effect.
It is decided to bleed off 0.25 kg/s of
vapour from the vapour line to the second
effect for use in another process. If the
feed is still heated to the boiling point of
the first effect by external means, what
will be the change in steam consumption
of the evaporator unit? For the purpose of
calculation, the latent heat of the vapours
and of the steam may both be taken as
2230 kJ/kg
Ад
O
correct the shaft misalignment in a cars transmission system, determine the offset distance required to correct the shaft misalignment of 4 degrees in a rotating system. shaft diameter is 4cm.
Chapter 1 Solutions
Thermodynamics: An Engineering Approach
Ch. 1.11 - The value of the gravitational acceleration g...Ch. 1.11 - One of the most amusing things a person can...Ch. 1.11 - An office worker claims that a cup of cold coffee...Ch. 1.11 - What is the difference between the classical and...Ch. 1.11 - Explain why the light-year has the dimension of...Ch. 1.11 - What is the difference between pound-mass and...Ch. 1.11 - What is the net force acting on a car cruising at...Ch. 1.11 - What is the weight, in N, of an object with a mass...Ch. 1.11 - If the mass of an object is 10 lbm, what is its...Ch. 1.11 - The acceleration of high-speed aircraft is...
Ch. 1.11 - The value of the gravitational acceleration g...Ch. 1.11 - A 3-kg plastic tank that has a volume of 0.2 m3 is...Ch. 1.11 - A 2-kg rock is thrown upward with a force of 200 N...Ch. 1.11 - Solve Prob. 113 using appropriate software. Print...Ch. 1.11 - A 4-kW resistance heater in a water heater runs...Ch. 1.11 - A 150-lbm astronaut took his bathroom scale (a...Ch. 1.11 - The gas tank of a car is filled with a nozzle that...Ch. 1.11 - How would you define a system to determine the...Ch. 1.11 - A large fraction of the thermal energy generated...Ch. 1.11 - A can of soft drink at room temperature is put...Ch. 1.11 - How would you define a system to determine the...Ch. 1.11 - How would you describe the state of the air in the...Ch. 1.11 - What is the difference between intensive and...Ch. 1.11 - The specific weight of a system is defined as the...Ch. 1.11 - Is the number of moles of a substance contained in...Ch. 1.11 - Is the state of the air in an isolated room...Ch. 1.11 - What is a quasi-equilibrium process? What is its...Ch. 1.11 - Define the isothermal, isobaric, and isochoric...Ch. 1.11 - What is specific gravity? How is it related to...Ch. 1.11 - What are the ordinary and absolute temperature...Ch. 1.11 - Consider an alcohol and a mercury thermometer that...Ch. 1.11 - Consider two dosed systems A and B. System A...Ch. 1.11 - Consider a system whose temperature is 18C....Ch. 1.11 - Steam enters a heat exchanger at 300 K. What is...Ch. 1.11 - The temperature of a system rises by 130C during a...Ch. 1.11 - The temperature of a system drops by 45F during a...Ch. 1.11 - The temperature of the lubricating oil in an...Ch. 1.11 - Heated air is at 150C. What is the temperature of...Ch. 1.11 - What is the difference between gage pressure and...Ch. 1.11 - Explain why some people experience nose bleeding...Ch. 1.11 - A health magazine reported that physicians...Ch. 1.11 - Someone claims that the absolute pressure in a...Ch. 1.11 - Consider two identical fans, one at sea level and...Ch. 1.11 - The absolute pressure in a compressed air tank is...Ch. 1.11 - A manometer measures a pressure difference as 40...Ch. 1.11 - A vacuum gage connected to a chambee reads 35 kPa...Ch. 1.11 - The maximum safe air pressure of a tire is...Ch. 1.11 - A pressure gage connected to a tank reads 50 psi...Ch. 1.11 - A pressure gage connected to a tank reads 500 kPa...Ch. 1.11 - A 200-pound man has a total foot imprint area of...Ch. 1.11 - The gage pressure in a liquid at a depth of 3 m is...Ch. 1.11 - The absolute pressure in water at a depth of 9 m...Ch. 1.11 - Consider a 1.75-m-tall man standing vertically in...Ch. 1.11 - The barometer of a mountain hiker reads 750 mbars...Ch. 1.11 - The basic barometer can be used to measure the...Ch. 1.11 - A gas is contained in a vertical, frictionless...Ch. 1.11 - Reconsider Prob. 158. Using appropriate software,...Ch. 1.11 - The piston of a vertical piston-cylinder device...Ch. 1.11 - Both a gage and a manometer are attached to a gas...Ch. 1.11 - Reconsider Prob. 161. Using appropriate software,...Ch. 1.11 - A manometer containing oil ( = 850 kg/m3) is...Ch. 1.11 - A manometer is used to measure the air pressure in...Ch. 1.11 - A mercury manometer ( = 13.600 kg/m3) is connected...Ch. 1.11 - Repeat Prob. 165 for a differential mercury height...Ch. 1.11 - The pressure in a natural gas pipeline is measured...Ch. 1.11 - Repeat Prob. 167E by replacing air with oil with a...Ch. 1.11 - Blood pressure is usually measure by wrapping a...Ch. 1.11 - The maximum blood pressure in the upper arm of a...Ch. 1.11 - Consider a U-tube whose arms are open to the...Ch. 1.11 - Consider a double-fluid manometer attached to an...Ch. 1.11 - Calculate the absolute pressure. P1, of the...Ch. 1.11 - Consider the manometer in Fig. 173. If the...Ch. 1.11 - Consider the manometer in Fig. 173. If the...Ch. 1.11 - The hydraulic lift in a car repair shop has an...Ch. 1.11 - Consider the system shown in Fig. 177. If a change...Ch. 1.11 - The gage pressure of the air in the tank shown in...Ch. 1.11 - Repeat Prob. 178 for a gage pressure of 40 kPa.Ch. 1.11 - What is the value of the engineering software...Ch. 1.11 - Determine a positive real root of this equation...Ch. 1.11 - Solve this system of two equations with two...Ch. 1.11 - Solve this system of three equations with three...Ch. 1.11 - Solve this system of three equations with three...Ch. 1.11 - The reactive force developed by a jet engine to...Ch. 1.11 - The reactive force developed by a jet engine to...Ch. 1.11 - A man goes to a traditional market to buy a steak...Ch. 1.11 - What is the weight of a 1-kg substance in N, kN,...Ch. 1.11 - The pressure in a steam boiler is given to be 92...Ch. 1.11 - A hydraulic lift is to be used to lift a 1900-kg...Ch. 1.11 - The average atmosphere pressure on earth is...Ch. 1.11 - Hyperthermia of 5C (i.e., 5C rise above the normal...Ch. 1.11 - The boiling temperature of water decreases by...Ch. 1.11 - A house is losing heat at a rate of 1800 kJ/h per...Ch. 1.11 - The average body temperature of a person rises by...Ch. 1.11 - The average temperature of the atmosphere in the...Ch. 1.11 - A vertical, frictionless pistoncylinder device...Ch. 1.11 - A vertical pistoncylinder device contains a gas at...Ch. 1.11 - The force generated by a spring is given by F =...Ch. 1.11 - An air-conditioning system requires a 35-m-long...Ch. 1.11 - Balloons are often filled with helium gas because...Ch. 1.11 - Reconsider Prob. 1101. Using appropriate software,...Ch. 1.11 - Determine the maximum amount of load, in kg, the...Ch. 1.11 - The lower half of a 6-m-high cylindrical container...Ch. 1.11 - A pressure cooker cooks a lot faster than an...Ch. 1.11 - The pilot of an airplane reads the altitude 6400 m...Ch. 1.11 - A glass tube is attached to a water pipe, as shown...Ch. 1.11 - Consider a U-tube whose arms are open to the...Ch. 1.11 - A water pipe is connected to a double-U manometer...Ch. 1.11 - A gasoline line is connected to a pressure gage...Ch. 1.11 - Repeat Prob. 1110 for a pressure gage reading of...Ch. 1.11 - When measuring small pressure differences with a...Ch. 1.11 - Pressure transducers are commonly used to measure...Ch. 1.11 - Consider the flow of air through a wind turbine...Ch. 1.11 - The drag force exerted on a car by air depends on...Ch. 1.11 - It is well known that cold air feels much colder...Ch. 1.11 - Reconsider Prob. 1116E. Using appropriate...Ch. 1.11 - During a heating process, the temperature of an...Ch. 1.11 - An apple loses 3.6 kJ of heat as it cools per C...Ch. 1.11 - At sea level, the weight of 1 kg mass in SI units...Ch. 1.11 - Consider a fish swimming 5 m below the free...Ch. 1.11 - The atmospheric pressures at the top and the...Ch. 1.11 - Consider a 2.5-m-deep swimming pool. The pressure...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
What types of coolant are used in vehicles?
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
1.2 Explain the difference between geodetic and plane
surveys,
Elementary Surveying: An Introduction To Geomatics (15th Edition)
The solid steel shaft AC has a diameter of 25 mm and is supported by smooth bearings at D and E. It is coupled ...
Mechanics of Materials (10th Edition)
What is an uninitialized variable?
Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)
How is the hydrodynamic entry length defined for flow in a pipe? Is the entry length longer in laminar or turbu...
Fluid Mechanics: Fundamentals and Applications
The ____________ is always transparent.
Web Development and Design Foundations with HTML5 (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 14.14. A three-stage evaporator is fed with 1.25 kg/s of a liquor which is concentrated from 10 to 40 per cent solids by mass. The heat transfer coefficients may be taken as 3.1, 2.5 and 1.7 kW/m² K, respectively, in each effect. Calculate the steam flow at 170 kN/m² and the temperature distribution in the three effects, if: (a) the feed is at 294 K, and (b) the feed is at 355 K. Forward feed is used in each case and the values of U are the same for the two systems. The boiling point in the third effect is 325 K and the liquor has no boiling point rise. Oarrow_forwardForm of the second question 3 Question 2: 500 In the figure shown, gear 2 rotates at 1000rpm. It transmits a power of 5kw to gear 4 via gear Loose 3 idler all gears spur, angle Gear pressure =200, and inclusion = 5m. Draw Analyze the forces on gear 3 and then find the reactions on Column 6, knowing the number of teeth N₂ = 12, N3 = 60, N₁ = 40arrow_forwardExample (7): Determine the heating surface area required for the production of 2.5kg/s of 50wt% NaOH solution from 15 wt% NaOH feed solution which entering at 100 oC to a single effect evaporator. The steam is available as saturated at 451.5K and the boiling point rise (boiling point evaluation) of 50wt% solution is 35K. the overall heat transfer coefficient is 2000 w/m²K. The pressure in the vapor space of the evaporator at atmospheric pressure. The solution has a specific heat of 4.18kJ/ kg.K. The enthalpy of vaporization under these condition is 2257kJ/kg Example (6): 5:48 م An evaporator is concentrating F kg/h at 311K of a 20wt% solution of NaOH to 50wt %. The saturated steam used for heating is at 399.3K. The pressure in the vapor space of the evaporator is 13.3 KPa abs. The 5:48 Oarrow_forward
- Design a speed warning system that receives on two lines, an indication of the speed limit on the highway. There are three possible values 45, 55, or 65 MPH. It receives from the automobile, on two other lines, an indication of the speed of the vehicle. There are four possible values under 45, between 46 and 55, between 56 and 65, and over 65 MPH. It produces two outputs. The first, F, indicates whether the car is going above the speed limit. The second, G, indicates that the car is driving at a "dangerous speed" _ defined as either over 65 MPH or more than 10 MPH above the speed limit. The inputs are coded as follows: Speed limit A B Speed C D 45 0 0 65 1 1 a) Complete the Truth table for the speed warning system Inputs Outputs A B C D F G b) Write the Minterm expressions for the Output Functions. c) Minimize the output functions d) Implement the logic e) Using LabView, verify the Correctness of the Speed Warning System.arrow_forwardEx. The cantilever beam shown us, made ofrem steel with = 552 MPa is , ut subjected to fully reversed load. Neglect shear stress effect, estimate wheather the beam is safe or not safe at N= lo cycles 9 The beam is machined surface and the operating temp. is 100C. A F 200 a=0 N -200 N 1 L= 10cm D time 764 Yze.25 Gm L D= 1.3 cm d = 1 cm b= 1 cm -momend diagram AA -FL at the root of the cantilever, the bending moment is max. factor Ex. Repeat Ex. in page (24), with fluctuating load as shown below. By = 46242,041 = 552 MPa. Find the safety (NF) using Modified -Goodman, Gerber, and soderberg criterias F(N). ....400 timearrow_forwardExample The bar Shown Is. subsected to combined loadings as follows: P = = 20.KN F = 0 to 2 KN T= 0-5 KN.m The bar material has Se=400 mpa and out = 1379 MPa, Yiu= 1000 mpa Find the factor of safety, neglect the transverse Shear- Sol I load analysis ар F T Par = 20 KN (axial load- Pmim = -20 KN fully reversed dynamic) Emark 2km = Fmim = 0 N (bending loading -dynamic) Repeated D=20mm d=15 mm r=5mm L= =250mmarrow_forward
- PL 120.8 Paie An extrusion operation produces the cross section shown in the figure below from a billet whose diameter = 100 mm The flow curve for the billet is define by σ = 160 €0.18. Determine extrusion force when (300,200 and 100) mm length remaining in the container. and blarrow_forwardEXAM/3 Q/In the figure below the clamping force on the pipe is (331.7 lb), knowing that a single threaded screw Acme with major diameter (1 in) is used with coefficient of sliding friction (0.2135) and booth screw and nut are made from 1030 - hot rolled Carbon Steel. If the collar has a rolling friction of 0.02 and the mean collar diameter is 1.75 in. Determine: 1- The tightening and loosening torques. Is it self-locking? 2- Thread screw and nut induced stresses. w*7.3+² + Fx (7.3+1+6+43)) Fy (3 10 3.3 in Fx 421 3.3 (sin( 'in 3 in ?) 32° hinge "Sin (12")arrow_forwardQ1: At a constant velocity of 20 m/s, air passes across a flat plate with ambient pressure and temperature of 20 kPa and 20°C. At a distance of 7.5 cm from the leading edge, the plate is heated to a constant temperature of 75°C. How much heat is transferred overall from the leading edge to a location 35 cm from the leading edge? Tw Q2: The critical Reynolds number for flow over a flat plate in a particular application is 10°. This critical Reynolds number and an isothermal plate temperature of 400 K are encountered by air flowing across it at 1 atm, 300 K, and 10 m/s. At the end of the plate, the Reynolds number is 5 x 106. What will average heat transfer coefficient be for this system? What is the length of the plate? What is the plate's loss of heat? Re 21 Wat Q3: At 50 kPa and 300 K, air moves at an average velocity of 6 m/s across a 20-cm- Thoo P square plate. To provide a steady flow of heat, an electrical heater is mounted within the plate. If the plate temperature is limited to…arrow_forward
- Quiz/Find the state of stresses and principal stresses at point (A)and point (B) for the circular cantilever rod of a diameter (5 cm) shown in figure bellow. Knowing that the rod is subjected to a force (F= 12 kN), axial force (P=2 kN) and to a torque (T= 488π N.m). P=2 kN T L= 300 mm Samsung Quad Camera galaxy A9arrow_forwardهنا زيد علي عبد المحسن Quiz/ If the weld size equal to (0.9 cm) find the max allowable shear stress (Tmax) for figure (1) bellow? All dimensions are in mm. fuds L 320 mm Fig. 1 CUS 110 F = 400 N 235 160 36.23% Sin@ X ELX 12 9arrow_forwardFile Edit View Window Help. Open Q11 QUIZ 2023.pdf - Adobe Reader 1 107% Tools Fill & Sign Comment a-Write five advantages and two disadvantages of welded joints over riveted joints. b- Define gas welding. Q2/ A plate, 75 mm wide and 10 mm thick, is joined with another steel plate by means of single transverse and double parallel fillet welds, as shown in Figl. The joint is subjected to a maximum tensile force of 55 kN. The permissible shear stresses in the weld material is 50 N/mm2 respectively. Determine the required length of each parallel filet weld. (Neglect the tensile stress in the parallel welding lines and Design based on the shear stresses only) sarmad. u. s22 P 75 Of D P Update is available x Click here for details. WP RENG 12:55 3/14/2023 DENKAarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamics: Maxwell relations proofs 1 (from ; Author: lseinjr1;https://www.youtube.com/watch?v=MNusZ2C3VFw;License: Standard Youtube License