How is the hydrodynamic entry length defined for flow in a pipe? Is the entry length longer in laminar or turbulent flow?
The hydrodynamic entry length for the laminar flow in the pipe.
The hydrodynamic entry length for the turbulent flow in the pipe.
The entry length is longer in laminar or turbulent flow.
Answer to Problem 1CP
The hydrodynamic entry length for the laminar flow in the pipe is
The hydrodynamic entry length for the turbulent flow in the pipe is
The entry length is longer in the laminar flow as compare to the turbulent flow.
Explanation of Solution
The growth of boundary layer thickness remains along the flow direction until the boundary layer reaches the pipe center. The hydrodynamic entrance region is defined as the region from the inlet of pipe to the point at which the boundary layers merges at the centerline of the pipe and the hydrodynamic entry length is the length of the hydrodynamic entrance region.
Write the expression for the hydrodynamic entry length for the laminar flow in the circular pipe.
Here, hydrodynamic entry length for the laminar flow in the circular pipe is
Write the expression for the hydrodynamic entry length for the turbulent flow in the circular pipe.
Here, hydrodynamic entry length for the turbulent flow in the circular pipe is
The hydrodynamic entry length for the laminar flow is longer than the hydrodynamic entry length for the turbulent flow at the high Reynolds numbers.
Conclusion:
The hydrodynamic entry length for the laminar flow in the pipe is
The hydrodynamic entry length for the turbulent flow in the pipe is
The entry length is longer in the laminar flow as compare to the turbulent flow.
Want to see more full solutions like this?
Chapter 8 Solutions
Fluid Mechanics: Fundamentals and Applications
Additional Engineering Textbook Solutions
Java: An Introduction to Problem Solving and Programming (8th Edition)
Database Concepts (8th Edition)
Concepts Of Programming Languages
Thermodynamics: An Engineering Approach
Modern Database Management
Mechanics of Materials (10th Edition)
- A cylindrical specimen of aluminum is pulled in tension. Use the stress v. strain plot below for this specimen of Al to answer parts (a) - (f). Hint: Each strain increment is 0.004. Be sure to include your engineering problem solving method per the class rubric. 400 350 300 250 Stress (MPa) 200 150 100 50 Aluminum (Stress v. Strain) 0 0 0.02 0.04 0.06 0.08 Strain 0.1 0.12 0.14 0.16 a. Compute the modulus of elasticity. b. Determine the yield strength at a strain offset of 0.002. c. Determine the tensile strength of this metal. d. Compute the ductility in percent elongation. e. Compute the modulus of resilience. f. Determine the elastic strain recovery for an unloaded stress of 340 MPa.arrow_forwardConsider a single crystal of silver oriented such that a tensile stress is applied along a [112] direction. If slip occurs on a (011) plane and in a [111] direction and is initiated at an applied tensile stress of 15.9 MPa, compute the critical resolved shear stress.arrow_forwardA hypothetical component must not fail when a tensile stress of 15.25 MPa is applied. Determine the maximum allowable internal crack length if the surface energy of the component is 1.50 J/m2. Assume a modulus of elasticity of 350 GPa.arrow_forward
- Fresh air at 21.1 C in which partial pressure of water vapor is 0.018 atmosphere is blown at the rate of 214 m3/h first through a preheater and then adiabatically saturated in spray chambers to 100% saturation and again reheated this reheated air has humidity of 0.024 kg water vapor per kg dry air. It is assumed that the fresh air and the air leaving the re-heater have the same percentage humidity. Determine:- a- The temperature of preheater, spray-chamber and re-heater b- Heat requirement for preheating and re-heating 11:39 مarrow_forwardThe answer to the problem is 7.24 N. Please show me how to get the final answerarrow_forwardThe answer to the problem is 17.9N. Please show me how to get the final answerarrow_forward
- The answer to the problem is 2.93 ft/s. Please show me how to get the final answerarrow_forwardExample(3): 0.15 kg/s steam at atmospheric pressure and superheated to 400 K is bled into an air stream at 320 K and 20 per cent relative humidity. What is the temperature, enthalpy, and relative humidity of the mixed stream if the air is flowing at 5 kg/ s? How much steam would be required to provide an exit temperature of 330 K and what would be the humidity of this mixture? 11:39 مarrow_forwardThe answer to the problem is 31.3rad/s. Please show me how to get the final answerarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY