Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10.5, Problem 10.5QQ
(i) If you are trying to loosen a stubborn screw from a piece of wood with a screwdriver and fail, should you find a screwdriver for which the handle is (a) longer or (b) fatter? (ii) If you are trying to loosen a stubborn bolt from a piece of metal with a wrench and fail, should you find a wrench for which the handle is (a) longer or (b) fatter?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
If you are trying to loosen a stubborn screw from a piece of wood with a screwdriver and fail, should you find a screwdriver for which the handle is (a) longer or (b) fatter?
(II) Two masses, mA = 35.0 kg and mB = 38.0 kg, are
connected by a rope that hangs
over a pulley (as in Fig. 10-59).
The pulley is a uniform cylinder of
radius 0.381 m and mass 3.1 kg.
Initially ma is on the ground and
mB rests 2.5 m above the ground.
If the system is released, use
conservation of energy to deter-
mine the speed of mB just before
it strikes the ground. Assume the
pulley bearing is frictionless.
%3D
RO
mB
mA
2.5 m
FIGURE 10-59
ba
Problem 67.
inoni lo
(IID) A.
(III) A 1.80-m-long pole is balanced vertically with its tipon the ground. It starts to fall and its lower end does not slip.What will be the speed of the upper end of the pole justbefore it hits the ground? [Hint: Use conservation of energy.
Chapter 10 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 10.1 - A rigid object is rotating in a counterclockwise...Ch. 10.2 - Consider again the pairs of angular positions for...Ch. 10.3 - Ethan and Joseph are riding on a merry-go-round....Ch. 10.4 - Prob. 10.4QQCh. 10.5 - (i) If you are trying to loosen a stubborn screw...Ch. 10.7 - Prob. 10.6QQCh. 10.9 - A solid sphere and a hollow sphere have the same...Ch. 10.10 - A competitive diver leaves the diving board and...Ch. 10.12 - Two items A and B are placed at the top of an...Ch. 10 - A cyclist rides a bicycle with a wheel radius of...
Ch. 10 - Prob. 2OQCh. 10 - Prob. 3OQCh. 10 - Prob. 4OQCh. 10 - Assume a single 300-N force is exerted on a...Ch. 10 - Consider an object on a rotating disk a distance r...Ch. 10 - Answer yes or no to the following questions. (a)...Ch. 10 - Figure OQ10.8 shows a system of four particles...Ch. 10 - As shown in Figure OQ10.9, a cord is wrapped onto...Ch. 10 - Prob. 10OQCh. 10 - Prob. 11OQCh. 10 - A constant net torque is exerted on an object....Ch. 10 - Let us name three perpendicular directions as...Ch. 10 - A rod 7.0 m long is pivoted at a point 2.0 m from...Ch. 10 - Prob. 15OQCh. 10 - A 20.0-kg horizontal plank 4.00 m long rests on...Ch. 10 - (a) What is the angular speed of the second hand...Ch. 10 - Prob. 2CQCh. 10 - Prob. 3CQCh. 10 - Which of the entries in Table 10.2 applies to...Ch. 10 - Prob. 5CQCh. 10 - Prob. 6CQCh. 10 - Prob. 7CQCh. 10 - Prob. 8CQCh. 10 - Three objects of uniform densitya solid sphere, a...Ch. 10 - Prob. 10CQCh. 10 - If the torque acting on a particle about an axis...Ch. 10 - Prob. 12CQCh. 10 - Stars originate as large bodies of slowly rotating...Ch. 10 - Prob. 14CQCh. 10 - Prob. 15CQCh. 10 - Prob. 16CQCh. 10 - Prob. 17CQCh. 10 - During a certain time interval, the angular...Ch. 10 - A bar on a hinge starts from rest and rotates with...Ch. 10 - Prob. 3PCh. 10 - Prob. 4PCh. 10 - The tub of a washer goes into its spin cycle,...Ch. 10 - Why is the following situation impossible?...Ch. 10 - An electric motor rotating a workshop grinding...Ch. 10 - Prob. 8PCh. 10 - Prob. 9PCh. 10 - A wheel 2.00 m in diameter lies in a vertical...Ch. 10 - A disk 8.00 cm in radius rotates at a constant...Ch. 10 - Make an order-of-magnitude estimate of the number...Ch. 10 - A car traveling on a flat (unbanked), circular...Ch. 10 - Prob. 14PCh. 10 - A digital audio compact disc carries data, each...Ch. 10 - Figure P10.16 shows the drive train of a bicycle...Ch. 10 - Big Ben, the Parliament tower clock in London, has...Ch. 10 - Rigid rods of negligible mass lying along the y...Ch. 10 - A war-wolf, or trebuchet, is a device used during...Ch. 10 - Prob. 20PCh. 10 - Review. Consider the system shown in Figure P10.21...Ch. 10 - The fishing pole in Figure P10.22 makes an angle...Ch. 10 - Find the net torque on the wheel in Figure P10.23...Ch. 10 - Prob. 24PCh. 10 - Prob. 25PCh. 10 - Prob. 26PCh. 10 - A force of F=(2.00i+3.00j) N is applied to an...Ch. 10 - A uniform beam resting on two pivots has a length...Ch. 10 - Prob. 29PCh. 10 - Prob. 30PCh. 10 - Figure P10.31 shows a claw hammer being used to...Ch. 10 - Prob. 32PCh. 10 - A 15.0-m uniform ladder weighing 500 N rests...Ch. 10 - A uniform ladder of length L and mass m1 rests...Ch. 10 - BIO The arm in Figure P10.35 weighs 41.5 N. The...Ch. 10 - A crane of mass m1 = 3 000 kg supports a load of...Ch. 10 - An electric motor turns a flywheel through a drive...Ch. 10 - Prob. 38PCh. 10 - Prob. 39PCh. 10 - In Figure P10.40, the hanging object has a mass of...Ch. 10 - A potters wheela thick stone disk of radius 0.500...Ch. 10 - A model airplane with mass 0.750 kg is tethered to...Ch. 10 - Consider two objects with m1 m2 connected by a...Ch. 10 - Review. An object with a mass of m = 5.10 kg is...Ch. 10 - A playground merry-go-round of radius R = 2.00 m...Ch. 10 - The position vector of a particle of mass 2.00 kg...Ch. 10 - Prob. 48PCh. 10 - Big Ben (Fig. P10.17), the Parliament tower clock...Ch. 10 - A disk with moment of inertia I1 rotates about a...Ch. 10 - Prob. 51PCh. 10 - A space station is constructed in the shape of a...Ch. 10 - Prob. 53PCh. 10 - Why is the following situation impossible? A space...Ch. 10 - The puck in Figure 10.25 has a mass of 0.120 kg....Ch. 10 - A student sits on a freely rotating stool holding...Ch. 10 - Prob. 57PCh. 10 - Prob. 58PCh. 10 - A cylinder of mass 10.0 kg rolls without slipping...Ch. 10 - A uniform solid disk and a uniform hoop are placed...Ch. 10 - A metal can containing condensed mushroom soup has...Ch. 10 - A tennis ball is a hollow sphere with a thin wall....Ch. 10 - Prob. 63PCh. 10 - Review. A mixing beater consists of three thin...Ch. 10 - A long, uniform rod of length L and mass M is...Ch. 10 - The hour hand and the minute hand of Big Ben, the...Ch. 10 - Two astronauts (Fig. P10.67), each having a mass...Ch. 10 - Two astronauts (Fig. P10.67), each having a mass...Ch. 10 - Prob. 69PCh. 10 - Prob. 70PCh. 10 - The reel shown in Figure P10.71 has radius R and...Ch. 10 - Review. A block of mass m1 = 2.00 kg and a block...Ch. 10 - A stepladder of negligible weight is constructed...Ch. 10 - A stepladder of negligible weight is constructed...Ch. 10 - A wad of sticky clay with mass m and velocity vi...Ch. 10 - Prob. 76PCh. 10 - Prob. 77PCh. 10 - Review. A string is wound around a uniform disk of...Ch. 10 - Prob. 79PCh. 10 - Prob. 80PCh. 10 - A projectile of mass m moves to the right with a...Ch. 10 - Figure P10.82 shows a vertical force applied...Ch. 10 - A solid sphere of mass m and radius r rolls...Ch. 10 - Prob. 84PCh. 10 - BIO When a gymnast performing on the rings...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (II) A grinding wheel is a uniform cylinder with a radius of 8.50 cm and a mass of 0.380 kg. Calculate (a) its moment of inertia about its center, and (b) the applied torque needed to accelerate it from rest to 1750 rpm in 5.00 s. Take into account a frictional torque that has been measured to slow down the wheel from 1500 rpm to rest in 55.0 s.arrow_forwardA bicycle wheel is at rest against a curb. if the wheel has a radius R, and a mass M and is at rest against a curb of height h=.14R, determine the minimum horizontal force in terms of M and g that must be applied to the axle to make the wheel start to rise up over the steparrow_forward(d) A meter stick is held vertically with one end on the floor and is then allowed to fall. Find the speed of the other end just before it hits the floor, assuming that the end on the floor does not slip. (Hint: Consider the stick to be a thin rod and use the conservation of energy principle.)arrow_forward
- (II) A sphere of radius ro = 24.5 cm and mass m = 1.20 kg starts from rest and rolls without slipping down a 30.0° incline that is 10.0 m long. (a) Calculate its translational and rotational speeds when it reaches the bottom. (b) What is the ratio of translational to rotational kinetic energy at the bottom? Avoid putting in numbers until the end so you can answer: (c) do your answers in (a) and (b) depend on the radius of the sphere or its mass?arrow_forward(3) www. During a stendy right turn, a person exerts the forces shown on the steering wheel. Note that each force consista of a tangential component and a radially- inward component. Determine the moment exerted about the steering column at O. 30 15 15 30 8 N 375 mmarrow_forwardUsing a screwdriver, you try to remove a screw from a piece of furniture, but can't get it to turn. To increase the chance of success, you should use a screwdriver that O is longer. O is shorter. has a narrower handle. O has a wider handle.arrow_forward
- Consider a force F = 80 N applied to a beam as shown in Fig. 8–37. The length of the beam is l = 5.0 m, and 0 = 37°, so that x = 3.0 m and y = 4.0 m. Of the following expressions, which ones give the correct torque produced by the force F around point P? (a) 80 N. (b) (80 N)(5.0 m). (c) (80 N)(5.0 m)(sin 37°). (d) (80 N)(4.0 m). (e) (80 N)(3.0 m). ) (48 N)(5.0 m). (g) (48 N)(4.0 m)(sin 37°). P FIGURE 8–37 MisConceptual Question 5.arrow_forwardConsider a force F = 80 N applied to a beam as shown in Fig. 8–37. The length of the beam is l = 5.0 m, and 0 = 37°, so that x = 3.0 m and y = 4.0 m. Of the following expressions, which ones give the correct torque produced by the force F around point P? (a) 80 N. (b) (80 N)(5.0 m). (c) (80 N)(5.0 m)(sin 37°). (d) (80 N)(4.0 m). (e) (80 N)(3.0 m). ) (48 N)(5.0 m). (g) (48 N)(4.0 m)(sin 37°). P FIGURE 8–37 MisConceptual Question 5.arrow_forward(II) A rotating uniform cylindrical platform of mass 220 kg and radius 5.5 m slows down from 3.8 rev/s to rest in 16 s when the driving motor is disconnected. Estimate the power output of the motor (hp) required to maintain a steady speed of 3.8 rev/s.arrow_forward
- (II) A potter is shaping a bowl on a potter's wheel rotating at constant angular velocity of 1.6 rev/s (Fig. 8–48). The friction force between her hands and the clay is 1.5 N total. (a) How large is her torque on the wheel, if the diameter of the bowl is 9.0 cm? (b) How long would it take for the potter's wheel to stop if the only torque acting on it is due to the potter's hands? The moment of inertia of the wheel and the bowl is 0.11 kg•m². FIGURE 8–48 Problem 40.arrow_forwardFind the amount of torque needed to push open a door in each of the given scenarios: You push with 10 N at the edge of the door (0.8 m from the hinge), perpendicular to the door You push with 10 N at the center of the door, perpendicular to the door You push with 10 N at the edge of the door, but at an angle of 30 degrees between your push and the door Which push is most effective?arrow_forward(II) Let us treat a helicopter rotor blade as a long thin rod, as shown in Fig. 8–49. (a) If each of the three rotor helicopter blades is 3.75 m long and has a mass of 135 kg, calculate the moment of inertia of the three rotor blades about the axis of rotation. (b) How much torque must the motor apply to bring the blades from rest up to a speed of 6.0 rev/s in 8.0 s? Rotor FIGURE 8-49 3.75 m- m = 135 kg Problem 43.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Rotational Kinetic Energy; Author: AK LECTURES;https://www.youtube.com/watch?v=s5P3DGdyimI;License: Standard YouTube License, CC-BY