University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10.3, Problem 10.3TYU
Suppose the solid cylinder used as a yo-yo in Example 10.6 is replaced by a hollow cylinder of the same mass and radius. (a) Will the acceleration of the yo-yo (i) increase, (ii) decrease, or (iii) remain the same? (b) Will the string tension (i) increase, (ii) decrease, or (iii) remain the same?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A cat propels a ball on a horizontal circular track of a 15 cm radius at an initial speed of 2m/s. The ball makes 4 turns before stopping.
Part 1:(a) With respect to a tangential axis x whose positive direction is oriented in the direction of motion, what is its tangential acceleration? (b) What is the modulus of the resultant acceleration of the ball as it completes its third turn?
Part 2:Find;c) angular acceleration (pay attention to sign conventions!):
d) The number of additionnal revolutions the disc will make before stopping:
Then replace the following values in your models to test them:
Initial angular velocity of the disk: w0=25.6 rad/s
The angular speed of the disc after 12 revolutions: w=5.1 rad/s
A mountain biker tries to start pedalling in the mud. The total mass (80 kg, bike + biker) is distributed equally between the front and rear wheels. There is a loss of 10% of moment of force between pedal and the rear wheel. The diameter of wheels is 70 cm, and the static friction coefficient between tyre and the mud is 0.3. The pedal angle is 25° from the vertical and has a length of 20 cm. The force exerted by the cyclist is vertical. What is the maximal force that the biker can produce without skidding?Hint 1: ImageHint 2: the value of Mp, the moment around the pedals, is about 50 Nm.
10:08 #L
和必 令 Rll l D
CompreneISION
A uniform disc of mass M and radius R initially stands vertically on the
right end of a horizontal plank of mass M and length L, as shown. The
plank rests on smooth horizontal floor and friction between disc and plank
is sufficiently high such that disc rolls on plank without slipping. The plank
is pulled to right with a constant horizontal force of magnitude F.
Chapter 10 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 10.1 - The accompanying figure shows a force P being...Ch. 10.2 - The figure shows a glider of mass m1 that can...Ch. 10.3 - Suppose the solid cylinder used as a yo-yo in...Ch. 10.4 - You apply equal torques to two different...Ch. 10.5 - A ball is attached to one end of a piece of...Ch. 10.6 - If the polar ice caps were to melt completely due...Ch. 10.7 - Suppose the mass of the flywheel in Fig. 10.34 is...Ch. 10 - Can a single force applied to a body change both...Ch. 10 - Suppose you could use wheels of any type in the...Ch. 10 - Serious bicyclists say that if you reduce the...
Ch. 10 - The harder you hit the brakes while driving...Ch. 10 - When an acrobat walks on a tightrope, she extends...Ch. 10 - When you turn on an electric motor, it takes...Ch. 10 - The work done by a force is the product of force...Ch. 10 - A valued client brings a treasured ball to your...Ch. 10 - You make two versions of the same object out of...Ch. 10 - Two identical masses are attached to frictionless...Ch. 10 - The force of gravity acts on the baton in Fig....Ch. 10 - A certain solid uniform bail reaches a maximum...Ch. 10 - A wheel is rolling without slipping on a...Ch. 10 - A hoop, a uniform solid cylinder, a spherical...Ch. 10 - A ball is rolling along al speed without slipping...Ch. 10 - You are standing at the center of a large...Ch. 10 - Global Warming. If the earths climate continues to...Ch. 10 - It two spinning objects have the same angular...Ch. 10 - A student is sitting on a frictionless rotating...Ch. 10 - A point particle travels in a straight line at...Ch. 10 - In Example 10.10 (Section 10.6) the angular speed ...Ch. 10 - In Example 10.10 (Section 10.6) the rotational...Ch. 10 - As discussed in Section 10.6, the angular momentum...Ch. 10 - If you stop a spinning raw egg for the shortest...Ch. 10 - A helicopter has a large main rotor that rotates...Ch. 10 - In a common design for a gyroscope, the flywheel...Ch. 10 - A gyroscope is precessing about a vertical axis....Ch. 10 - A gyroscope takes 3.8 s to precess 1.0 revolution...Ch. 10 - A gyroscope is precessing as in Fig. 10.32. What...Ch. 10 - A bullet spins on its axis as it emerges from a...Ch. 10 - Calculate the torque (magnitude and direction)...Ch. 10 - Calculate the net torque about point O for the two...Ch. 10 - A square metal plate 0.180m on each side is...Ch. 10 - Three forces are applied to a wheel of radius...Ch. 10 - One force acting on a machine part is...Ch. 10 - A metal bar is in the xy-plane with one end of the...Ch. 10 - A machinist is using a wrench lo loosen a nut. The...Ch. 10 - A uniform disk with mass 40.0 kg and radius 0.200...Ch. 10 - The flywheel of an engine has moment of inertia...Ch. 10 - A cord is wrapped around ihe rim of a solid...Ch. 10 - A machine part has the shape of u solid uniform...Ch. 10 - CP A stone is suspended from the free end of a...Ch. 10 - Prob. 10.13ECh. 10 - CP A 15.0-kg bucket of water is suspended by a...Ch. 10 - A wheel rotates without friction about a...Ch. 10 - A 12.0-kg box resting on a horizontal,...Ch. 10 - A 2.20-kg hoop 1.20 m in diameter is rolling to...Ch. 10 - BIO Gymnastics. We can roughly model a gymnastic...Ch. 10 - What fraction of the total kinetic energy is...Ch. 10 - A siring is wrapped several times around the rim...Ch. 10 - A solid ball is released from rest and slides down...Ch. 10 - A hollow, spherical shell with mass 2.00 kg rolls...Ch. 10 - A 392-N wheel comes off a moving truck and rolls...Ch. 10 - A uniform marble rolls down a symmetrical bowl,...Ch. 10 - A thin, light string is wrapped around the outer...Ch. 10 - A Ball Rolling Uphill. A bowling ball rolls...Ch. 10 - A size-5 soccer ball of diameter 22.6 cm and mass...Ch. 10 - A size-5 soccer ball of diameter 22.6 cm and mass...Ch. 10 - A playground merry-go-round has radius 2.40 m and...Ch. 10 - An engine delivers 175 hp to an aircraft propeller...Ch. 10 - A 2.80-kg grinding wheel is in the form of a solid...Ch. 10 - An electric motor consumes 9.00 kJ of electrical...Ch. 10 - (a) Compute the torque developed by an industrial...Ch. 10 - An airplane propeller is 2.08 m in length (from...Ch. 10 - A 2.00-kg rock has a horizontal velocity of...Ch. 10 - A woman with mass 50 kg is standing on the rim of...Ch. 10 - Find the magnitude of the angular momentum of the...Ch. 10 - (a) Calculate the magnitude of the angular...Ch. 10 - CALC A hollow, thin-walled sphere of mass 12.0 kg...Ch. 10 - CP A small block on a frictionless, horizontal...Ch. 10 - Prob. 10.41ECh. 10 - A diver comes off a board with arms straight up...Ch. 10 - The Spinning Figure Skater. The outstretched hands...Ch. 10 - A solid wood door 1.00 m wide and 2.00 m high is...Ch. 10 - A large wooden turntable in the shape of a flat...Ch. 10 - Asteroid Collision! Suppose that an asteroid...Ch. 10 - Prob. 10.47ECh. 10 - A thin uniform rod has a length of 0.500 m and is...Ch. 10 - A thin, uniform metal bar. 2.00 m long and...Ch. 10 - A uniform. 4.5-kg, square, solid wooden gate 1.5 m...Ch. 10 - The rotor (flywheel) of a loy gyroscope has mass...Ch. 10 - A Gyroscope on the Moon. A certain gyroscope...Ch. 10 - Stabilization of the Hubble Space Telescope. The...Ch. 10 - A 50.0-kg grindstone is a solid disk 0.520 m in...Ch. 10 - 10.55A grindstone in the shape of a solid disk...Ch. 10 - A uniform, 8.40-kg, spherical shell 50.0 cm in...Ch. 10 - A thin, uniform. 3.80-kg bar, 80.0 cm long, has...Ch. 10 - You are designing a simple elevator system for an...Ch. 10 - The Atwoods Machine. Figure P10.59 illustrates an...Ch. 10 - The mechanism shown in Fig. P10.60 is used to...Ch. 10 - A large 16.0-kg roll of paper with radius R = 18.0...Ch. 10 - A block with mass m = 5.00 kg slides down a...Ch. 10 - Two metal disks, one with radius R1 = 2.50 cm and...Ch. 10 - A lawn roller in the form of a thin-walled, hollow...Ch. 10 - Two weights are connected by a very light,...Ch. 10 - You complain about fire safety to the landlord of...Ch. 10 - The Yo-yo. A yo-yo is made from two uniform disks,...Ch. 10 - CP A thin-walled, hollow spherical shell of mass m...Ch. 10 - A basketball (which can be closely modeled as a...Ch. 10 - CP A solid uniform ball rolls without slipping up...Ch. 10 - Rolling Stones. A solid, uniform, spherical...Ch. 10 - You are designing a system for moving aluminum...Ch. 10 - A 42.0-cm-diameter wheel, consisting of a rim and...Ch. 10 - A uniform, 0.0300-kg rod of length 0.400 in...Ch. 10 - A uniform solid cylinder with mass M and radius 2R...Ch. 10 - Tarzan and Jane in the 21st Century. Tarzan has...Ch. 10 - A 5.00-kg ball is dropped from a height of 12.0 m...Ch. 10 - The solid wood door of a gymnasium is 1.00 m wide...Ch. 10 - A uniform rod of length L rests on a friction less...Ch. 10 - CP A large turntable with radius 6.00 m rotates...Ch. 10 - In your job as a mechanical engineer you are...Ch. 10 - A local ice hockey team has asked you to design an...Ch. 10 - You are designing a slide for a water park. In a...Ch. 10 - Neutron Star Glitches. Occasionally, a rotating...Ch. 10 - A 500.0-g bird is flying horizontally at 2.25 m/s,...Ch. 10 - CP A small block with mass 0.130 kg is attached to...Ch. 10 - A 55-kg runner runs around the edge of a...Ch. 10 - DATA The V6 engine in a 2014 Chevrolet Silverado...Ch. 10 - DATA You have one object of each of these shapes,...Ch. 10 - DATA You are testing a small flywheel (radius...Ch. 10 - CALC A block with mass m is revolving with linear...Ch. 10 - When an object is rolling without slipping, the...Ch. 10 - A demonstration gyroscope wheel is constructed by...Ch. 10 - The moment of inertia of the empty turntable is...Ch. 10 - While the turntable is being accelerated, the...Ch. 10 - A doubling of the torque produces a greater...Ch. 10 - If the bodys center of mass were not placed on the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The given frequency in Hz using scientific notation.
Glencoe Physical Science 2012 Student Edition (Glencoe Science) (McGraw-Hill Education)
Referring to Figure 10.16, (a) Calculate P3and notehow it compares with P3found in the first two exampleproblem...
University Physics Volume 2
13. A supply plane needs to drop a package of food to scientists working on a glacier in Greenland. The plane f...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Predict: which spool will reach the floor first. Explain how your answer is consistent with your extended free-...
Tutorials in Introductory Physics
Q6.11 A falling brick has a mass of 1.5 kg and is moving straight downward with a speed of 5.0 m/s. A 1.5-kg ph...
University Physics (14th Edition)
A spiral is an ice-skating position in which the skater glides on one foot with the other foot held above hip l...
Essential University Physics: Volume 1 (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider the disk in Problem 71. The disks outer rim hasradius R = 4.20 m, and F1 = 10.5 N. Find the magnitude ofeach torque exerted around the center of the disk. FIGURE P12.71 Problems 71-75arrow_forwardFind the net torque on the wheel in Figure P10.23 about the axle through O, taking a = 10.0 cm and b = 25.0 cm. Figure P10.23arrow_forwardAs shown in Figure OQ10.9, a cord is wrapped onto a cylindrical reel mounted on a fixed, frictionless, horizontal axle. When does the reel have a greater magnitude of angular acceleration? (a) When the cord is pulled down with a constant force of 50 N. (b) When an object of weight 50 N is hung from the cord and released. (c) The angular accelerations in parts (a) and (b) are equal. (d) It is impossible to determine. Figure OQ10.9arrow_forward
- Rigid rods of negligible mass lying along the y axis connect three particles (Fig. P10.18). The system rotates about the x axis with an angular speed of 2.00 rad/s. Find (a) the moment of inertia about the x axis, (b) the total rotational kinetic energy evaluated from 12I2, (c) the tangential speed of each particle, and (d) the total kinetic energy evaluated from 12mivi2. (e) Compare the answers for kinetic energy in parts (b) and (d). Figure P10.18arrow_forwardA space station is coast me ted in the shape of a hollow ring of mass 5.00 104 kg. Members of the crew walk on a deck formed by the inner surface of the outer cylindrical wall of the ring, with radius r = 100 m. At rest when constructed, the ring is set rotating about its axis so that the people inside experience an effective free-fall acceleration equal to g. (Sec Fig. P11.29.) The rotation is achieved by firing two small rockets attached tangentially to opposite points on the rim of the ring, (a) What angular momentum does the space station acquirer (b) For what time interval must the rockets be fired if each exerts a thrust of 125 N?arrow_forward1 Force F = (7.26 N )i^— (7.05 N )ê acts on a pebble with position vector ☞ = (5.76 m )j^– (3.10 m), relative to the origin. What is the resulting torque acting on the pebble about (a) the origin and (b) a point with coordinates (5.00 m, 0, -5.54 m)? - Your answer is partially correct. (a) Number www (b) Number Hint eTextbook and Media Save for Later -40.608 52 -40.608 80 F3 Q F4 + + JUL 2 i 22.51 9 F5 -18.26 tv MacBook Air C F6 + ← F7 -41.817 -41.82 ST DII F8 k Units N-m Attempts: 2 of 4 used A kUnits F9 N-m Submit Answer A F10 + # F11arrow_forward
- The angular frequency of a rotating rigid body increases from 500 to 1500 rev/min in 120 s (a) What is the initial angular frequency? (b) What is the initial angular velocity? (c) What is the angular acceleration of the body? (d) Through what angle does it turn in this 120 s? For this question record the answer for (a)-(c). Initial angular frequency fo = [Select] Initial angular velocity wo [Select] Angular acceleration of the body a = [Select] <arrow_forwardIn unit-vector notation, what is the torque about the origin on a particle located at coordinates (0, -3.16 m, 4.06 m) due to (a) force 1 with components F1x = 9.46 N and F1y = F1z = 0, and (b) force F 2 with components F2x = 0, F2y = 4.08 N, F2z = 7.91 N? (a) Number i i i k Units + (b) Number i i i k Units +arrow_forwardNeeds Complete typed solution with 100 % accuracy.arrow_forward
- 11:00 AN O docs.google.com/forms :D :Answer the following question= Q1: Compute the moment of inertia about the x-axis and the polar radius of gyration about 0 for the area shown. 20 20 20 20 Dimensions in millimeters Q2: A rack is made from roll-formed sheet steel and has the cross section shown. Determine the location of the centroid of the cross section. The dimensions are indicated at the center thickness of each segment. -10 mm- 15 mm 15 mm إضافة ملفarrow_forwarda constant horizontal force of magnitude 74.6 N is applied to a uniform solid cylinder by fishing line wrapped around the cylinder. The mass of the cylinder is 19.3 kg, its radius is 0.723 m, and the cylinder rolls smoothly on the horizontal surface. (a) What is the magnitude of the acceleration of the center of mass of the cylinder? (b) What is the magnitude of the angular acceleration of the cylinder about the center of mass? (c) In unit-vector notation, what is the frictional force acting on the cylinder?arrow_forwardA 1.50 kg thin spherical shell rolls without slipping across a level surface, translating at 3.00 m/s. If the shell's radius is 0.190 m, find the following. (a) the shell's translational kinetic energy (in J) ? J (b) the shell's rotational kinetic energy (in J) ?Jarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
What is Torque? | Physics | Extraclass.com; Author: Extraclass Official;https://www.youtube.com/watch?v=zXxrAJld9mo;License: Standard YouTube License, CC-BY