FLUID MECHANICS FUNDAMENTALS+APPS
4th Edition
ISBN: 9781259877766
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10, Problem 86EP
Air flows through the test section of a small wind tunnel at speed
And the length of the wind tunnel test section is 1.5ft. Assume that the boundary layer thickness is neggligibe prior to the start section. Is the boundary layer along the test section wall laminar or turbulent or transitional?
Answer: laminar
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
We are testing a flat plate of length L = 1.125 m and width W = 0.225 m in a stream of air flowing with a velocity of 20 m/s. In test case 1, the air is flowing parallel to L and in test case 2 air is flowing parallel to W. Find:
What portion of the boundary layer flow is laminar in each case?
What is the highest laminar boundary layer thickness in each case?
Assuming the flow is entirely turbulent over the plate, calculate the drag force in both test cases
Take air density as 1.2 kg/m3 and its viscosity as μ=18×10−6μ=18×10−6 N.s/m2.
Q4) Define the boundary layer, then find the thickness of boundary layer, shear stress, drag force and
coefficiet of drag in terms of Re for the velocity profile of laminar boundary layer u/U=4(y/8)-6(y/8)5.
Calcate the boundary layer thickness and drag force if the air flows over a sharp edged flat plate 1m long
and 0.5m wide at a velocity 0.9m/s, the air density 1.23 kg/m³ and the kinematic viscosity is 1.46*10-5 m/s².
Please help, I don't know how to do whats being asked. We have never split a flat plate in half for Shear force. Only know how to split the boundary layer from the uniform portion.
Chapter 10 Solutions
FLUID MECHANICS FUNDAMENTALS+APPS
Ch. 10 - Discuss how nondimensalizsionalization of the...Ch. 10 - Prob. 2CPCh. 10 - Expalain the difference between an “exact”...Ch. 10 - Prob. 4CPCh. 10 - Prob. 5CPCh. 10 - Prob. 6CPCh. 10 - Prob. 7CPCh. 10 - A box fan sits on the floor of a very large room...Ch. 10 - Prob. 9PCh. 10 - Prob. 10P
Ch. 10 - Prob. 11PCh. 10 - In Example 9-18 we solved the Navier-Stekes...Ch. 10 - Prob. 13PCh. 10 - A flow field is simulated by a computational fluid...Ch. 10 - In Chap. 9(Example 9-15), we generated an “exact”...Ch. 10 - Prob. 16CPCh. 10 - Prob. 17CPCh. 10 - A person drops 3 aluminum balls of diameters 2 mm,...Ch. 10 - Prob. 19PCh. 10 - Prob. 20PCh. 10 - Prob. 21PCh. 10 - Prob. 22PCh. 10 - Prob. 23PCh. 10 - Prob. 24PCh. 10 - Prob. 25PCh. 10 - Prob. 26PCh. 10 - Prob. 27PCh. 10 - Consider again the slipper-pad bearing of Prob....Ch. 10 - Consider again the slipper the slipper-pad bearing...Ch. 10 - Prob. 30PCh. 10 - Prob. 31PCh. 10 - Prob. 32PCh. 10 - Prob. 33PCh. 10 - Prob. 34EPCh. 10 - Discuss what happens when oil temperature...Ch. 10 - Prob. 36PCh. 10 - Prob. 38PCh. 10 - Prob. 39CPCh. 10 - Prob. 40CPCh. 10 - Prob. 41PCh. 10 - Prob. 42PCh. 10 - Prob. 43PCh. 10 - Prob. 44PCh. 10 - Prob. 45PCh. 10 - Prob. 46PCh. 10 - Prob. 47PCh. 10 - Prob. 48PCh. 10 -
Ch. 10 - Prob. 50CPCh. 10 - Consider the flow field produced by a hair dayer...Ch. 10 - In an irrotational region of flow, the velocity...Ch. 10 -
Ch. 10 - Prob. 54CPCh. 10 - Prob. 55PCh. 10 - Prob. 56PCh. 10 - Consider the following steady, two-dimensional,...Ch. 10 - Prob. 58PCh. 10 - Consider the following steady, two-dimensional,...Ch. 10 - Prob. 60PCh. 10 - Consider a steady, two-dimensional,...Ch. 10 -
Ch. 10 - Prob. 63PCh. 10 - Prob. 64PCh. 10 - Prob. 65PCh. 10 - In an irrotational region of flow, we wtite the...Ch. 10 - Prob. 67PCh. 10 - Prob. 68PCh. 10 - Water at atmospheric pressure and temperature...Ch. 10 - The stream function for steady, incompressible,...Ch. 10 -
Ch. 10 - We usually think of boundary layers as occurring...Ch. 10 - Prob. 73CPCh. 10 - Prob. 74CPCh. 10 - Prob. 75CPCh. 10 - Prob. 76CPCh. 10 - Prob. 77CPCh. 10 - Prob. 78CPCh. 10 - Prob. 79CPCh. 10 - Prob. 80CPCh. 10 - Prob. 81CPCh. 10 -
Ch. 10 - On a hot day (T=30C) , a truck moves along the...Ch. 10 - A boat moves through water (T=40F) .18.0 mi/h. A...Ch. 10 - Air flows parallel to a speed limit sign along the...Ch. 10 - Air flows through the test section of a small wind...Ch. 10 - Prob. 87EPCh. 10 - Consider the Blasius solution for a laminar flat...Ch. 10 - Prob. 89PCh. 10 - A laminar flow wind tunnel has a test is 30cm in...Ch. 10 - Repeat the calculation of Prob. 10-90, except for...Ch. 10 - Prob. 92PCh. 10 - Prob. 93EPCh. 10 - Prob. 94EPCh. 10 - In order to avoid boundary laver interference,...Ch. 10 - The stramwise velocity component of steady,...Ch. 10 - For the linear approximation of Prob. 10-97, use...Ch. 10 - Prob. 99PCh. 10 - One dimension of a rectangular fiat place is twice...Ch. 10 - Prob. 101PCh. 10 - Prob. 102PCh. 10 - Prob. 103PCh. 10 - Static pressure P is measured at two locations...Ch. 10 - Prob. 105PCh. 10 - For each statement, choose whether the statement...Ch. 10 - Prob. 107PCh. 10 - Calculate the nine components of the viscous...Ch. 10 - In this chapter, we discuss the line vortex (Fig....Ch. 10 - Calculate the nine components of the viscous...Ch. 10 - Prob. 111PCh. 10 - The streamwise velocity component of a steady...Ch. 10 - For the sine wave approximation of Prob. 10-112,...Ch. 10 - Prob. 115PCh. 10 - Suppose the vertical pipe of prob. 10-115 is now...Ch. 10 - Which choice is not a scaling parameter used to o...Ch. 10 - Prob. 118PCh. 10 - Which dimensionless parameter does not appear m...Ch. 10 - Prob. 120PCh. 10 - Prob. 121PCh. 10 - Prob. 122PCh. 10 - Prob. 123PCh. 10 - Prob. 124PCh. 10 - Prob. 125PCh. 10 - Prob. 126PCh. 10 - Prob. 127PCh. 10 - Prob. 128PCh. 10 - Prob. 129PCh. 10 - Prob. 130PCh. 10 - Prob. 131PCh. 10 - Prob. 132PCh. 10 - Prob. 133PCh. 10 - Prob. 134PCh. 10 - Prob. 135PCh. 10 - Prob. 136PCh. 10 - Prob. 137PCh. 10 - Prob. 138P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Local boundary layer effects, such as shear stress and heattransfer, are best correlated with local variables, rather usingdistance x from the leading edge. The momentum thicknessθ is often used as a length scale. Use the analysis of turbulentflat-plate flow to write local wall shear stress τw in terms ofdimensionless θ and compare with the formula recommendedby Schlichting: Cf ≈ 0.033 Reθ -0.268.arrow_forwardQI/ If the velocity profile of the boundary layer is 4 =-÷O find the thickness of boundary %3D layer, the shear stress at trailing edge and the drag force on one side of plate 2 m long , i if it is Kg immersed in water flowing with velocity of 0.4 m/s (p = 998 , 0= 1.007*10-6 m2/s m3arrow_forwardThe momentum thickness OM for laminar flow over a flat plate is (115/1134) 6. Find the following: a) Boundary layer thickness (6) divided by x. Compare this answer to the Blasius Solution. Answer should be 6/x = 5.733/sqrt(Rex). b) Local skin friction coefficient (cf). Answer hould be 0.5814/sqrt(Rex). c) Friction Drag Coefficient. Answer should be 1.1628/sqrt(Rex).arrow_forward
- I need the answer as soon as possiblearrow_forwardAir at 15°C forms a boundary layer near a solid wall. The velocity distribution in the boundary layer is given by: u/U = 1- exp (-2y/8), where U 35 m/sec. and 8 = 0.8 cm. Find the shear stress at wall (y 0).arrow_forwardIBL, Flat Plate. Apply the integral boundary layer analysis to a flat plate turbulent flow as follows. Assume the turbulent profile u/U = (y/δ)1/6 to compute the momentum flux term on the RHS of IBL, but on the LHS of IBL, use the empirical wall shear stress, adapted from pipe flow: ?w = 0.0233 ⍴U2 (v/Uδ)1/4 where the kinematic viscosity ν = μ/⍴. It is necessary to use this empirical wall shear relation because the turbulent power law velocity profile blows up at the wall and cannot be used to evaluate the wall shear stress. Compute (a) (δ/x) as a function of Rex; (b) total drag coefficient, CD, L as a function of ReL; (c) If ReL = 6 x 107 compare values for this IBL CD,L and those empirical ones given in Table 9.1 for both smooth plate and transitional at Rex = 5 x 105 cases. Note: You must show all the algebra in evaluating the IBL to get full credit. Ans OM: (a) (δ/x) ~ 10-1/(Rex)1/5; (b) CD,L ~ 10-2/(ReL)1/5; (c) CD,IBL ~ 10-3; CD,Smooth ~ 10-3; CD,Trans ~ 10-3arrow_forward
- In order to avoid boundary layer interference, engineers design a “boundary layer scoop” to skim off the boundary layer in a large wind tunnelFig. . The scoop is constructed of thin sheet metal. The air is at 20°C, and flows at V = 45.0 m/s. How high (dimension h) should the scoop be at downstream distance x = 1.45 m?arrow_forwardConsider the boundary layer flow=1-(1-)1.5, 0arrow_forwardA strong wind can blow a golf ball off the tee by pivoting it about point A, as shown in the figure. The golf ball has a radius of 22 mm and a mass of 47 g Assume a golf ball as a smooth sphere. The density of air is (p 1.22 kg/mn') and the viscosity is (u 1.8 10 (kg/m. s)). Calculate the wind speed (V) %3D %3D necessary to do this. V Radius - 22 mm Mass 47 g 6 mm ttarrow_forwardI want the detailed solution to understand a questionarrow_forwardPlease try to solve in 30 minutearrow_forwardFlow straighteners consist of arrays of narrow ducts placed in a flow to remove swirl and other transverse (secondary) velocities. One element can be idealised as a square box with thin sides as shown below. Calculate the pressure drop across a box with L=22 cm and a= 2.7 cm, if air with free-stream velocity of Uo = 11 m/s flows though the straightener. Use laminar flat-plate theory and take u = 1.85 x 10-5 Pa.s and p = 1.177kg/m³ . %3D %3D a Uo Figure 1: Flow across straighteners.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license