FLUID MECHANICS FUNDAMENTALS+APPS
4th Edition
ISBN: 9781259877766
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 10, Problem 45P
To determine
The
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A fluid flow is described (in Cartesian coordinates) by u = x2, v = 4xz. (a) Is this flow two-dimensional or three-dimensional? (b) Is this flow field steady or unsteady? (c) Find the simplest form of the z-component of velocity if the flow is incompressible.
4-17 Converging duct flow is modeled by the steady,
two-dimensional velocity field of Prob. 4-16. The pressure
field is given by
P = Po
2U,bx + b°(x² + y°)
where P, is the pressure at x = 0. Generate an expression for
the rate of change of pressure following a fluid particle.
1. If u- 3x'yr and v = -6x'y'r answer the following questions giving reasons,
Is this flow or fluid:
(a) Real (Satisfies Continuity Principle).
(b) Steady or unsteady.
(c) Uniform or non-uniform.
(d) One, two, or three dimensional.
(e) Compressible or incompressible.
Also, Find the acceleration at point (1,1).
%3D
Chapter 10 Solutions
FLUID MECHANICS FUNDAMENTALS+APPS
Ch. 10 - Discuss how nondimensalizsionalization of the...Ch. 10 - Prob. 2CPCh. 10 - Expalain the difference between an “exact”...Ch. 10 - Prob. 4CPCh. 10 - Prob. 5CPCh. 10 - Prob. 6CPCh. 10 - Prob. 7CPCh. 10 - A box fan sits on the floor of a very large room...Ch. 10 - Prob. 9PCh. 10 - Prob. 10P
Ch. 10 - Prob. 11PCh. 10 - In Example 9-18 we solved the Navier-Stekes...Ch. 10 - Prob. 13PCh. 10 - A flow field is simulated by a computational fluid...Ch. 10 - In Chap. 9(Example 9-15), we generated an “exact”...Ch. 10 - Prob. 16CPCh. 10 - Prob. 17CPCh. 10 - A person drops 3 aluminum balls of diameters 2 mm,...Ch. 10 - Prob. 19PCh. 10 - Prob. 20PCh. 10 - Prob. 21PCh. 10 - Prob. 22PCh. 10 - Prob. 23PCh. 10 - Prob. 24PCh. 10 - Prob. 25PCh. 10 - Prob. 26PCh. 10 - Prob. 27PCh. 10 - Consider again the slipper-pad bearing of Prob....Ch. 10 - Consider again the slipper the slipper-pad bearing...Ch. 10 - Prob. 30PCh. 10 - Prob. 31PCh. 10 - Prob. 32PCh. 10 - Prob. 33PCh. 10 - Prob. 34EPCh. 10 - Discuss what happens when oil temperature...Ch. 10 - Prob. 36PCh. 10 - Prob. 38PCh. 10 - Prob. 39CPCh. 10 - Prob. 40CPCh. 10 - Prob. 41PCh. 10 - Prob. 42PCh. 10 - Prob. 43PCh. 10 - Prob. 44PCh. 10 - Prob. 45PCh. 10 - Prob. 46PCh. 10 - Prob. 47PCh. 10 - Prob. 48PCh. 10 -
Ch. 10 - Prob. 50CPCh. 10 - Consider the flow field produced by a hair dayer...Ch. 10 - In an irrotational region of flow, the velocity...Ch. 10 -
Ch. 10 - Prob. 54CPCh. 10 - Prob. 55PCh. 10 - Prob. 56PCh. 10 - Consider the following steady, two-dimensional,...Ch. 10 - Prob. 58PCh. 10 - Consider the following steady, two-dimensional,...Ch. 10 - Prob. 60PCh. 10 - Consider a steady, two-dimensional,...Ch. 10 -
Ch. 10 - Prob. 63PCh. 10 - Prob. 64PCh. 10 - Prob. 65PCh. 10 - In an irrotational region of flow, we wtite the...Ch. 10 - Prob. 67PCh. 10 - Prob. 68PCh. 10 - Water at atmospheric pressure and temperature...Ch. 10 - The stream function for steady, incompressible,...Ch. 10 -
Ch. 10 - We usually think of boundary layers as occurring...Ch. 10 - Prob. 73CPCh. 10 - Prob. 74CPCh. 10 - Prob. 75CPCh. 10 - Prob. 76CPCh. 10 - Prob. 77CPCh. 10 - Prob. 78CPCh. 10 - Prob. 79CPCh. 10 - Prob. 80CPCh. 10 - Prob. 81CPCh. 10 -
Ch. 10 - On a hot day (T=30C) , a truck moves along the...Ch. 10 - A boat moves through water (T=40F) .18.0 mi/h. A...Ch. 10 - Air flows parallel to a speed limit sign along the...Ch. 10 - Air flows through the test section of a small wind...Ch. 10 - Prob. 87EPCh. 10 - Consider the Blasius solution for a laminar flat...Ch. 10 - Prob. 89PCh. 10 - A laminar flow wind tunnel has a test is 30cm in...Ch. 10 - Repeat the calculation of Prob. 10-90, except for...Ch. 10 - Prob. 92PCh. 10 - Prob. 93EPCh. 10 - Prob. 94EPCh. 10 - In order to avoid boundary laver interference,...Ch. 10 - The stramwise velocity component of steady,...Ch. 10 - For the linear approximation of Prob. 10-97, use...Ch. 10 - Prob. 99PCh. 10 - One dimension of a rectangular fiat place is twice...Ch. 10 - Prob. 101PCh. 10 - Prob. 102PCh. 10 - Prob. 103PCh. 10 - Static pressure P is measured at two locations...Ch. 10 - Prob. 105PCh. 10 - For each statement, choose whether the statement...Ch. 10 - Prob. 107PCh. 10 - Calculate the nine components of the viscous...Ch. 10 - In this chapter, we discuss the line vortex (Fig....Ch. 10 - Calculate the nine components of the viscous...Ch. 10 - Prob. 111PCh. 10 - The streamwise velocity component of a steady...Ch. 10 - For the sine wave approximation of Prob. 10-112,...Ch. 10 - Prob. 115PCh. 10 - Suppose the vertical pipe of prob. 10-115 is now...Ch. 10 - Which choice is not a scaling parameter used to o...Ch. 10 - Prob. 118PCh. 10 - Which dimensionless parameter does not appear m...Ch. 10 - Prob. 120PCh. 10 - Prob. 121PCh. 10 - Prob. 122PCh. 10 - Prob. 123PCh. 10 - Prob. 124PCh. 10 - Prob. 125PCh. 10 - Prob. 126PCh. 10 - Prob. 127PCh. 10 - Prob. 128PCh. 10 - Prob. 129PCh. 10 - Prob. 130PCh. 10 - Prob. 131PCh. 10 - Prob. 132PCh. 10 - Prob. 133PCh. 10 - Prob. 134PCh. 10 - Prob. 135PCh. 10 - Prob. 136PCh. 10 - Prob. 137PCh. 10 - Prob. 138P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- b) Derive the Navier-Stokes of continuity Equation If the fluid is incompressible, p = constant, independent of space and time, so that dp/ờt = 0. The continuity equation then reduces to v-v = 0.arrow_forwardIf you are 100 % confident then you can solve it otherwise leave it. Thank youarrow_forwardAn incompressible fluid of density ρ and viscosity μ flows down a plane inclined at an angle α.Assume constant gravitational acceleration downward, fully-developed flow, constant pressure inthe air outside the fluid, and zero stress exerted by the air on the fluid. i) Starting from the incompressible Navier-Stokes equations, derive the differential equation andboundary conditions that govern the velocity u(y). ii) Solve the equation from the previous part for u(y). iii) Using your solution, calculate the following quantities: The mass flow rate (per unit depth) down the channel. The vorticity vector, ~ξ, and rate-of-strain tensor, epsilon at a point (x, y) in the channel. The shear stress exerted by the fluid on the bottom wall The viscous force in the fluid iv) Consider a control volume consisting of a section of length L of the channel. Demonstratethat the conservation of x momentum holds for this control volume by integrating appropriatequantities over its perimeter and…arrow_forward
- An incompressible velocity field is given by u=a(x°y²-y), v unknown, w=bxyz where a and b are constants. (a)What is the form of the velocity component for that the flow conserves mass? (b) Write Navier- Stokes's equation in 2-dimensional space with x-y coordinate system.arrow_forwardPlease help me in answering the following practice question. Thank you for your help. Consider several elementary planar irrotational flows arranged in a plane in a cartesian coordinate system (x-y plane) with the unit of length in m (meter). A line source with strength 18 m^2/s is located at point A (0, 1); a line sink with strength of 15 m^2/s is located at point B (3, -2); a line vortex with strength of 9 m^2/s is located at point C (4, 1); and a uniform flow of 10 m/s is at angle 30° with positive x-direction (counter-clockwise). Find the resultant velocity and pressure induced at point D (2, 0) by the uniform stream, line source, line sink & line vortex. Pressure at the infinity at upstream of uniform flow is 1000 Pa.Please list all necessary assumptions.arrow_forwardKindly solve Question 2 complete only this is complete Question 2 nothing more information is provided for this questionarrow_forward
- Problem 1 Given a steady flow, where the velocity is described by: u = 3 cos(x) + 2ry v = 3 sin(y) + 2?y !! !! a) Find the stream function if it exists. b) Find the potential function if it exists. c) For a square with opposite diagonal corners at (0,0) and (47, 27), evaluate the circu- lation I = - f V.ds where c is a closed path around the square. d) Calculate the substantial derivative of velocity at the center of the same box.arrow_forwardPlease solve this question quecklyarrow_forwardSolve correctly please,please show all workarrow_forward
- . The velocity potential function o satisfy the Laplace equation: 820/ &x² + 820/ &y² + 8²o/ &z² = 0 Then the %3D flow isarrow_forwardHome Work (steady continuity equation at a point for incompressible fluid flow: 1- The x component of velocity in a steady, incompressible flow field in the xy plane is u= (A /x), where A-2m s, and x is measured in meters. Find the simplest y component of velocity for this flow field. 2- The velocity components for an incompressible steady flow field are u= (A x* +z) and v=B (xy + yz). Determine the z component of velocity for steady flow. 3- The x component of velocity for a flow field is given as u = Ax²y2 where A = 0.3 ms and x and y are in meters. Determine the y component of velocity for a steady incompressible flow. Assume incompressible steady two dimension flowarrow_forwardVerify whether or not the following difference representation for the continuity equation for a 2-D steady incompressible flow has the conservation property: (Ui+1,j + U₁+1, j-1 — Ui, j — Ui,j-1) (Vi+¹, j — Vi+1,j-1). Ay + 2Ax where u and v are the x and y components of velocity, respectively.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License