Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10, Problem 66P
(II) A Uniform thin rod of length l and mass M is suspended freely from one end. It is pulled to the side an angle θ and released. If friction can be ignored, what is its
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(II) A sphere of radius ro = 24.5 cm and mass m = 1.20 kg
starts from rest and rolls without slipping down a 30.0°
incline that is 10.0 m long. (a) Calculate its translational and
rotational speeds when it reaches the bottom. (b) What is
the ratio of translational to rotational kinetic energy at the
bottom? Avoid putting in numbers until the end so you can
answer: (c) do your answers in (a) and (b) depend on the
radius of the sphere or its mass?
(II) Calculate the angular velocity (a) of a clock’s secondhand, (b) its minute hand, and (c) its hour hand. State in rad/ s.(d) What is the angular acceleration in each case?
(II) A nonrotating cylindrical disk of moment of inertia I
is dropped onto an identical disk rotating at angular
speed w. Assuming no external torques, what is the final
common angular speed of the two disks?
Chapter 10 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 10.1 - In Example 103, we found that the carousel, after...Ch. 10.4 - Two forces (FB = 20 N and FA = 30 N) are applied...Ch. 10.7 - In Figs. 1020f and g, the moments of inertia for a...Ch. 10.8 - Estimate the energy stored in the rotational...Ch. 10.9 - Return to the Chapter-Opening Question, p. 248,...Ch. 10.9 - Find the acceleration a of a yo-yo whose spindle...Ch. 10 - A bicycle odometer (which counts revolutions and...Ch. 10 - Suppose a disk rotates at constant angular...Ch. 10 - Could a nonrigid object be described by a single...Ch. 10 - Can a small force ever exert a greater torque than...
Ch. 10 - Why is it more difficult to do a sit-up with your...Ch. 10 - Mammals that depend on being able to run fast have...Ch. 10 - If the net force on a system is zero, is the net...Ch. 10 - Two inclines have the same height but make...Ch. 10 - Two spheres look identical and have the same mass....Ch. 10 - Two solid spheres simultaneously start rolling...Ch. 10 - Why do tightrope walkers (Fig. 1043) carry a long,...Ch. 10 - A sphere and a cylinder have the same radius and...Ch. 10 - The moment of inertia of this textbook would be...Ch. 10 - The moment of inertia of a rotating solid disk...Ch. 10 - Prob. 15QCh. 10 - (I) Express the following angles in radians: (a)...Ch. 10 - Prob. 2PCh. 10 - Prob. 3PCh. 10 - (I) The blades in a blender rotate at a rate of...Ch. 10 - (II) (a) A grinding wheel 0.35 m in diameter...Ch. 10 - (II) A bicycle with tires 68 cm in diameter...Ch. 10 - (II) Calculate the angular velocity of (a) the...Ch. 10 - (II) A rotating merry-go-round makes one complete...Ch. 10 - (II) What is the linear speed of a point (a) on...Ch. 10 - (II) Calculate the angular velocity of the Earth...Ch. 10 - Prob. 11PCh. 10 - (II) A 64-cm-diameter wheel accelerates uniformly...Ch. 10 - (II) In traveling to the Moon, astronauts aboard...Ch. 10 - (II) A turntable of radius R1 is turned by a...Ch. 10 - (II) The axle of a wheel is mounted on supports...Ch. 10 - (I) An automobile engine slows down from 3500 rpm...Ch. 10 - (I) A centrifuge accelerates uniformly front rest...Ch. 10 - (I) Pilots can be tested for the stresses of...Ch. 10 - (II) A cooling fan is turned off when it is...Ch. 10 - (II) Using calculus, derive the angular kinematic...Ch. 10 - (II) A small rubber wheel is used to drive a large...Ch. 10 - (II) The angle through which a rotating wheel has...Ch. 10 - (II) The angular acceleration of a wheel, as a...Ch. 10 - (I) A 62-kg person riding a bike puts all her...Ch. 10 - (I) Calculate the net torque about the axle of the...Ch. 10 - (II) A person exerts a horizontal force of 32 N on...Ch. 10 - (II) Two blocks, each of mass m, are attached to...Ch. 10 - (II) A wheel of diameter 27.0 cm is constrained to...Ch. 10 - (II) The bolts on the cylinder head of an engine...Ch. 10 - (II) Determine the net torque on the 2.0-m-long...Ch. 10 - (I) Determine the moment of inertia of a 10.8-kg...Ch. 10 - (I) Estimate the moment of inertia of a bicycle...Ch. 10 - (II) A potter is shaping a bowl on a potters wheel...Ch. 10 - (II) An oxygen molecule consists of two oxygen...Ch. 10 - (II) A softball player swings a bat, accelerating...Ch. 10 - (II) A grinding wheel is a uniform cylinder with a...Ch. 10 - (II) A small 650-g ball on the end of a thin,...Ch. 10 - (II) The forearm in Fig. 1052 accelerates a 3.6-kg...Ch. 10 - (II) Assume that a 1.00-kg ball is thrown solely...Ch. 10 - (II) Calculate the moment of inertia of the array...Ch. 10 - (II) A merry-go-round accelerates from rest to...Ch. 10 - (II) A 0.72-m-diameter solid sphere can be rotated...Ch. 10 - (II) Suppose the force FT in the cord hanging from...Ch. 10 - (II) A dad pushes tangentially on a small...Ch. 10 - Prob. 45PCh. 10 - (II) Two blocks are connected by a light string...Ch. 10 - (II) A helicopter rotor blade can be considered a...Ch. 10 - (II) A centrifuge rotor rotating at 10,300 rpm is...Ch. 10 - (II) When discussing moments of inertia,...Ch. 10 - Prob. 50PCh. 10 - (III) An Atwoods machine consists of two masses,...Ch. 10 - (III) A string passing over a pulley has a 3.80-kg...Ch. 10 - (III) A hammer thrower accelerates the hammer...Ch. 10 - (III) A thin rod of length l stands vertically on...Ch. 10 - (I) Use the parallel-axis theorem to show that the...Ch. 10 - (II) Determine the moment of inertia of a 19-kg...Ch. 10 - (II) Two uniform solid spheres of mass M and...Ch. 10 - (II) A ball of mass M and radius r1 on the end of...Ch. 10 - (II) A thin 7.0-kg wheel of radius 32 cm is...Ch. 10 - (III) Derive the formula for the moment of inertia...Ch. 10 - (III) (a) Derive the formula given in Fig. 1020h...Ch. 10 - (I) An automobile engine develops a torque of 255m...Ch. 10 - (I) A centrifuge rotor has a moment of inertia of...Ch. 10 - (II) A rotating uniform cylindrical platform of...Ch. 10 - (II) A merry-go-round has a mass of 1640 kg and a...Ch. 10 - (II) A Uniform thin rod of length l and mass M is...Ch. 10 - (II) Two masses, mA = 35.0 kg and mB = 38.0 kg,...Ch. 10 - (III) A 4.00-kg mass and a 3.00-kg mass are...Ch. 10 - (III) A 2.30-m-long pole is balanced vertically on...Ch. 10 - (I) Calculate the translational speed of a...Ch. 10 - (I) A bowling ball of mass 7.3kg and radius 9.0 cm...Ch. 10 - (I) Estimate the kinetic energy of the Earth with...Ch. 10 - (II) A sphere of radius r0 = 24.5 cm and mass m =...Ch. 10 - (II) A narrow but solid spool of thread has radius...Ch. 10 - (II) A ball of radius r0 rolls on the inside of a...Ch. 10 - (II) A solid rubber ball rests on the floor of a...Ch. 10 - (II) A thin, hollow 0.545-kg section of pipe of...Ch. 10 - (II) In Example 1020, (a) how far has the ball...Ch. 10 - (III) The 1100-kg mass of a car includes four...Ch. 10 - (III) A wheel with rotational inertia I=12MR2...Ch. 10 - (III) A small sphere of radius r0 = 1.5 cm rolls...Ch. 10 - (I) A rolling hall slows down because the normal...Ch. 10 - A large spool of rope rolls on the ground with the...Ch. 10 - On a 12.0-cm-diameter audio compact disc (CD),...Ch. 10 - (a) A yo-yo is made of two solid cylindrical...Ch. 10 - A cyclist accelerates from rest at a rate of l.00...Ch. 10 - Suppose David puts a 0.50-kg rock into a sling of...Ch. 10 - A 1.4-kg grindstone in the shape of a uniform...Ch. 10 - Bicycle gears: (a) How is the angular velocity R...Ch. 10 - Figure 1065 illustrates an H2O molecule. The O H...Ch. 10 - One possibility for a low-pollution automobile is...Ch. 10 - A hollow cylinder (hoop) is rolling on a...Ch. 10 - Prob. 93GPCh. 10 - A marble of mass m and radius r rolls along the...Ch. 10 - The density (mass per unit length) of a thin rod...Ch. 10 - If a billiard ball is hit in just the right way by...Ch. 10 - If the coefficient of static friction between...Ch. 10 - A cord connected at one end to a block which can...Ch. 10 - The radius of the roll of paper shown in Fig. 1070...Ch. 10 - A solid uniform disk of mass 21.0 kg and radius...Ch. 10 - When bicycle and motorcycle riders pop a wheelie,...Ch. 10 - A crucial part of a piece of machinery starts as a...Ch. 10 - A thin uniform stick of mass M and length l is...Ch. 10 - (a) For the yo-yo-like cylinder of Example 1019,...Ch. 10 - (II) Determine the torque produced about the...Ch. 10 - (II) Use the expression that was derived in...
Additional Science Textbook Solutions
Find more solutions based on key concepts
explain the function of fermentation and the conditions under which it occurs?
Biology: Life on Earth with Physiology (11th Edition)
Modified True/False 3. __________ Aquatic microorganisms are more prevalent near the surface than at the bottom...
Microbiology with Diseases by Body System (5th Edition)
A source of electromagnetic radiation produces infrared light. Which of the following could be the wavelength ...
Chemistry: The Central Science (14th Edition)
36. Two loudspeakers in a 20°C room emit 686 Hz sound waves along the x-axis. What is the smallest distance bet...
College Physics: A Strategic Approach (3rd Edition)
10. In rats, gene produces black coat color if the genotype is, but black pigment is not produced if the genoty...
Genetic Analysis: An Integrated Approach (3rd Edition)
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If the torque acting on a particle about an axis through a certain origin is zero, what can you say about its angular momentum about that axis?arrow_forwardIf you know the velocity of a particle, can you say anything about the particle’s angular momentum?arrow_forwardA massless tether with a masses tied to both ends rotates about a fixed axis through the center. Can the total acceleration of the tether mass combination be zero If the angular velocity Is constant?arrow_forward
- (II) Two masses, mA = 35.0 kg and mB = 38.0 kg, are connected by a rope that hangs over a pulley (as in Fig. 10-59). The pulley is a uniform cylinder of radius 0.381 m and mass 3.1 kg. Initially ma is on the ground and mB rests 2.5 m above the ground. If the system is released, use conservation of energy to deter- mine the speed of mB just before it strikes the ground. Assume the pulley bearing is frictionless. %3D RO mB mA 2.5 m FIGURE 10-59 ba Problem 67. inoni lo (IID) A.arrow_forward(II) A rotating uniform cylindrical platform of mass 220 kg and radius 5.5 m slows down from 3.8 rev/s to rest in 16 s when the driving motor is disconnected. Estimate the power output of the motor (hp) required to maintain a steady speed of 3.8 rev/s.arrow_forward#7arrow_forward
- (II) A small rubber wheel is used to drive a large potterywheel. The two wheels are mounted so that their circularedges touch. The small wheel has a radius of 2.0 cm andaccelerates at the rate of 7.2 rad/s and it is in contact withthe pottery wheel (radius 27.0 cm) without slipping. Calculate (a) the angular acceleration of the pottery wheel, and(b) the time it takes the pottery wheel to reach its requiredspeed of 65 rpmarrow_forward(c) Drive three equations for rotation with constant angular acceleration.arrow_forward(II) An oxygen molecule consists of two oxygen atoms whose total mass is 5.3 × 10-26 kg and whose moment of inertia about an axis perpendicular to the line joining the two atoms, midway between them, is 1.9 x 10-46 kg - m². From these data, estimate the effective distance between the atoms.arrow_forward
- (II) A person of mass 75 kg stands at the center of a rotatingmerry-go-round platform of radius 3.0 m and moment ofinertia 820 kg .m2 The platform rotates without frictionwith angular velocity 0.95 rad/s The person walks radiallyto the edge of the platform. (a) Calculate the angularvelocity when the person reaches the edge. (b) Calculatethe rotational kinetic energy of the system of platform plusperson before and after the person’s walk.arrow_forward12–163. The car travels along the circular curve having a radius r = 400 ft. At the instant shown, its angular rate of rotation is ở = 0.025 rad/s, which is decreasing at the rate ö = -0.008 rad/s². Determine the radial and transverse components of the car's velocity and acceleration at this instant and sketch these components on the curve. *12–164. The car travels along the circular curve of radius r = 400 ft with a constant speed of v = 30 ft/s. Determine the angular rate of rotation ở of the radial line r and the magnitude of the car's acceleration. r= 400 ftarrow_forwardA belt is pulled to the right between cylinders A and B . Knowing that the speed of the belt is a constant 5 ft/s and no slippage occurs, determine (a) the angular velocities of A and B ,(b) the accelerations of the points which are in contact with the belt.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Rotational Kinetic Energy; Author: AK LECTURES;https://www.youtube.com/watch?v=s5P3DGdyimI;License: Standard YouTube License, CC-BY