ACHIEVE/CHEMICAL PRINCIPLES ACCESS 2TERM
ACHIEVE/CHEMICAL PRINCIPLES ACCESS 2TERM
7th Edition
ISBN: 9781319403959
Author: ATKINS
Publisher: MAC HIGHER
bartleby

Concept explainers

Question
Book Icon
Chapter 1, Problem 1.31E

(a)

Interpretation Introduction

Interpretation:

Laser that can be used has to be determined among a high-intensity red ruby laser and a low-intensity violet GaN laser.

Concept Introduction:

Wavelength and frequency are inversely proportional to each other and the relationship between wavelength and frequency can be given as,

  ν=cλ

Here, ν is the frequency, λ is the wavelength and c is the speed of light

Planck’s equation,

    E = hν

Here, ν is the frequency

(a)

Expert Solution
Check Mark

Explanation of Solution

  • Calculate the energy of light from a high-intensity red ruby laser:

Wavelength of light from a high-intensity red ruby laser is 694 nm = 694×109m.

The frequency of light from a high-intensity red ruby laser is calculated by using the equation,

    ν=cλ=2.998×108m/s694×109m=4.32×1014s1

The frequency of light is 4.32×1014s1

The energy per photon of light is calculated,

  E=

Substituting the values to the above equation,

  E==6.626×1034J.s×4.32×1014s1=2.86×1019J

The energy per photon is 2.86×1019J.

  • Calculate the energy of light from a low-intensity violet GaN laser:

Wavelength of light from a low-intensity violet GaN laser is 405 nm = 405×109m.

The frequency of light from a low-intensity violet GaN laser is calculated by using the equation,

    ν=cλ=2.998×108m/s405×109m=7.40×1014s1

The frequency of light is 7.40×1014s1

The energy per photon of light is calculated,

  E=

Substituting the values to the above equation,

  E==6.626×1034J.s×7.40×1014s1=4.90×1019J

The energy per photon is 4.90×1019J.

Comparing the values it is clear that the energy of light from a low-intensity violet GaN laser is higher than that of a high-intensity red ruby laser. Hence, a low-intensity violet GaN laser is used since it will give enough energy for ejecting an electron.

(b)

Interpretation Introduction

Interpretation:

Kinetic energy of the electrons emitted has to be calculated.

Concept Introduction:

Photoelectric effect: It is a process where electrons get ejected when a ray of light having adequately high frequency hits on the surface of metal.

Kinetic energy of one ejected electron can be calculated using the given formula,

  12meν2 = hνΦ

Here, ν is the frequency of incident radiation.

12meν2 is the kinetic energy of one ejected electron

hν is the energy of the photons in the incident radiation.

Φ is the energy needed for ejecting an electron (work function).

(b)

Expert Solution
Check Mark

Answer to Problem 1.31E

Kinetic energy of the electrons emitted is 2.10×1020 J.

Explanation of Solution

Given information is shown below,

  Φ = 2.93 eV= 2.93 eV×1.602×1019 J1 eV = 4.69×1019 J

Here, a low-intensity violet GaN laser is used

The frequency of light from a low-intensity violet GaN laser is calculated by using the equation,

    ν=cλ=2.998×108m/s405×109m=7.40×1014s1

The energy per photon of light is calculated,

  E==6.626×1034J.s×7.40×1014s1=4.90×1019J

The kinetic energy of the electrons emitted can be calculated as follows,

  12meν2 = hνΦ= 4.90×1019J4.69×1019 J= 2.10×1020 J

Therefore, kinetic energy of the electrons emitted is 2.10×1020 J.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
One type of laser used in the treatment of vascular skin lesions is a neodymium-doped yttrium aluminum garnet or Nd:YAG laser. The wavelength commonly used in these treatments is 532 nm. What is the frequency of this radiation?
When light passes through a colored solution placed in a 1 cm thick cell, the ratio of the incident light to the transmitted light is 1.26 km. This is equivalent to this ratio for the same solution when placed in a 2 cm thick cell.
What are the molecular processes that occur when (a) infrared, (b) x-ray, and (c) ultraviolet photons are absorbed by a molecule?

Chapter 1 Solutions

ACHIEVE/CHEMICAL PRINCIPLES ACCESS 2TERM

Ch. 1 - Prob. 1A.8ECh. 1 - Prob. 1A.9ECh. 1 - Prob. 1A.10ECh. 1 - Prob. 1A.11ECh. 1 - Prob. 1A.12ECh. 1 - Prob. 1A.13ECh. 1 - Prob. 1A.14ECh. 1 - Prob. 1A.15ECh. 1 - Prob. 1A.16ECh. 1 - Prob. 1A.17ECh. 1 - Prob. 1B.1ASTCh. 1 - Prob. 1B.1BSTCh. 1 - Prob. 1B.2ASTCh. 1 - Prob. 1B.2BSTCh. 1 - Prob. 1B.3ASTCh. 1 - Prob. 1B.3BSTCh. 1 - Prob. 1B.4ASTCh. 1 - Prob. 1B.4BSTCh. 1 - Prob. 1B.5ASTCh. 1 - Prob. 1B.5BSTCh. 1 - Prob. 1B.1ECh. 1 - Prob. 1B.2ECh. 1 - Prob. 1B.3ECh. 1 - Prob. 1B.4ECh. 1 - Prob. 1B.5ECh. 1 - Prob. 1B.6ECh. 1 - Prob. 1B.7ECh. 1 - Prob. 1B.8ECh. 1 - Prob. 1B.9ECh. 1 - Prob. 1B.10ECh. 1 - Prob. 1B.11ECh. 1 - Prob. 1B.12ECh. 1 - Prob. 1B.13ECh. 1 - Prob. 1B.14ECh. 1 - Prob. 1B.15ECh. 1 - Prob. 1B.16ECh. 1 - Prob. 1B.17ECh. 1 - Prob. 1B.18ECh. 1 - Prob. 1B.19ECh. 1 - Prob. 1B.21ECh. 1 - Prob. 1B.22ECh. 1 - Prob. 1B.23ECh. 1 - Prob. 1B.24ECh. 1 - Prob. 1B.25ECh. 1 - Prob. 1B.26ECh. 1 - Prob. 1B.27ECh. 1 - Prob. 1B.28ECh. 1 - Prob. 1C.1ASTCh. 1 - Prob. 1C.1BSTCh. 1 - Prob. 1C.1ECh. 1 - Prob. 1C.2ECh. 1 - Prob. 1C.3ECh. 1 - Prob. 1C.7ECh. 1 - Prob. 1D.1ASTCh. 1 - Prob. 1D.1BSTCh. 1 - Prob. 1D.2ASTCh. 1 - Prob. 1D.2BSTCh. 1 - Prob. 1D.1ECh. 1 - Prob. 1D.2ECh. 1 - Prob. 1D.3ECh. 1 - Prob. 1D.4ECh. 1 - Prob. 1D.5ECh. 1 - Prob. 1D.6ECh. 1 - Prob. 1D.7ECh. 1 - Prob. 1D.9ECh. 1 - Prob. 1D.10ECh. 1 - Prob. 1D.11ECh. 1 - Prob. 1D.12ECh. 1 - Prob. 1D.13ECh. 1 - Prob. 1D.14ECh. 1 - Prob. 1D.15ECh. 1 - Prob. 1D.16ECh. 1 - Prob. 1D.17ECh. 1 - Prob. 1D.18ECh. 1 - Prob. 1D.19ECh. 1 - Prob. 1D.20ECh. 1 - Prob. 1D.21ECh. 1 - Prob. 1D.22ECh. 1 - Prob. 1D.23ECh. 1 - Prob. 1D.24ECh. 1 - Prob. 1D.25ECh. 1 - Prob. 1D.26ECh. 1 - Prob. 1E.1ASTCh. 1 - Prob. 1E.1BSTCh. 1 - Prob. 1E.2ASTCh. 1 - Prob. 1E.2BSTCh. 1 - Prob. 1E.1ECh. 1 - Prob. 1E.2ECh. 1 - Prob. 1E.3ECh. 1 - Prob. 1E.4ECh. 1 - Prob. 1E.5ECh. 1 - Prob. 1E.7ECh. 1 - Prob. 1E.8ECh. 1 - Prob. 1E.9ECh. 1 - Prob. 1E.10ECh. 1 - Prob. 1E.11ECh. 1 - Prob. 1E.12ECh. 1 - Prob. 1E.13ECh. 1 - Prob. 1E.14ECh. 1 - Prob. 1E.15ECh. 1 - Prob. 1E.16ECh. 1 - Prob. 1E.17ECh. 1 - Prob. 1E.18ECh. 1 - Prob. 1E.19ECh. 1 - Prob. 1E.20ECh. 1 - Prob. 1E.21ECh. 1 - Prob. 1E.22ECh. 1 - Prob. 1E.23ECh. 1 - Prob. 1E.24ECh. 1 - Prob. 1E.25ECh. 1 - Prob. 1E.26ECh. 1 - Prob. 1F.1ASTCh. 1 - Prob. 1F.1BSTCh. 1 - Prob. 1F.2ASTCh. 1 - Prob. 1F.2BSTCh. 1 - Prob. 1F.3BSTCh. 1 - Prob. 1F.1ECh. 1 - Prob. 1F.2ECh. 1 - Prob. 1F.3ECh. 1 - Prob. 1F.4ECh. 1 - Prob. 1F.5ECh. 1 - Prob. 1F.6ECh. 1 - Prob. 1F.7ECh. 1 - Prob. 1F.8ECh. 1 - Prob. 1F.10ECh. 1 - Prob. 1F.11ECh. 1 - Prob. 1F.12ECh. 1 - Prob. 1F.13ECh. 1 - Prob. 1F.14ECh. 1 - Prob. 1F.15ECh. 1 - Prob. 1F.17ECh. 1 - Prob. 1F.18ECh. 1 - Prob. 1F.19ECh. 1 - Prob. 1F.22ECh. 1 - Prob. 1.1ECh. 1 - Prob. 1.2ECh. 1 - Prob. 1.3ECh. 1 - Prob. 1.9ECh. 1 - Prob. 1.10ECh. 1 - Prob. 1.11ECh. 1 - Prob. 1.12ECh. 1 - Prob. 1.13ECh. 1 - Prob. 1.14ECh. 1 - Prob. 1.15ECh. 1 - Prob. 1.17ECh. 1 - Prob. 1.19ECh. 1 - Prob. 1.21ECh. 1 - Prob. 1.22ECh. 1 - Prob. 1.23ECh. 1 - Prob. 1.24ECh. 1 - Prob. 1.25ECh. 1 - Prob. 1.27ECh. 1 - Prob. 1.28ECh. 1 - Prob. 1.31E
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
Chemistry In Focus
Chemistry
ISBN:9781337399692
Author:Tro, Nivaldo J.
Publisher:Cengage Learning,
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Text book image
Fundamentals Of Analytical Chemistry
Chemistry
ISBN:9781285640686
Author:Skoog
Publisher:Cengage
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning