College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
When passed through a diffraction grating with a slit spacing of .005 mm (5 X 10^-6m) , the first-order maximum ("fringe") for light of a single wavelength lies a distance of 20 cm from the center of a screen located 2.3 m from the grating. What is the
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- When salt is sprinkled on a flame, yellow light consisting of two closely space wavelengths 11=588.997 nm and 12=589.594 nm are produced (they were observed by Fraunhofer in the Sun's spectrum). a) If this light falls on a diffraction grating with 300 lines/mm (pay attention to the units!), what is the angle between the 2nd order spectra of these two wavelengths? b) How many lines N of this grating must be illuminated for these lines to just be resolved?arrow_forwardMonochromatic light of wavelength 612 nm falls on a slit. If the angle between the first two bright fringes on either side of the central maximum is 34°, estimate the slit width. Express your answer to two significant figures and include the appropriate units. Di D= 6 μ μA Ω % μm ?arrow_forwardWhich of these is the theoretical maximum number of bright fringes visible in the diffraction pattern when green (I = 500 nm) light shines through double slits separated by 2.1 * 10^-6m?arrow_forward
- Given a double slit set up with a spacing of 5.74*10-6m and the light has a wavelength of 618 nm: How far from the central maximum is the third dark fringe (m=2) when the distance between the slits and the screen is 5.00 meters? a) 1.40m b) 2.03m c) 1.30m d) 1.10m (Hint: answer is a)arrow_forwardMonochromatic light (wavelength = 455 nm) is incident perpendicularly on a single slit (width = 0.56 mm). A screen is placed parallel to the slit plane, and on it the distance between the two minima on either side of the central maximum is 2.1 mm. (a) What is the distance from the slit to the screen? (Hint: The angle to either minimum is small enough that sin ≈ tan 9.) (b) What is the distance on the screen between the first minimum and the third minimum on the same side of the central maximum? (a) Number 120 (b) Number i 1.8 Units Units cm mmarrow_forwardYou measure three segments of the distance between a diffraction slit an the screen on which the pattern forms: x1 = (15.8 ± 0.2) cm, x2 = (6.7 ± 0.1) cm, and x3 = (11.3 ± 0.1). What is the uncertainty of the total distance x1 + x2 + x3? Group of answer choices 0.4 cm 0.5 cm 0.2 cm 0.3 cm 0.1 cmarrow_forward
- The Lens Equation If Fis the focal length of a convex lens and an object is placed at a distance x from the lens, then its image will be at a distance y from the lens, where F, x, and y are related by the lens equation FX y Suppose that a lens has a focal length of 4.8 cm and that the image of an object is 4 cm closer to the lens than the object itself. How far from the lens is the object?arrow_forwardGiven a single slit diffraction set up, a slit width of 8.37*10-6m, the screen is 6.00 meters away, and a wavelength of 480 nm, how far away are m=+2 and m=-2 dark fringes?arrow_forwardslit of width 0.46 mm is illuminated with light of wavelength 534 nm, and a screen is placed 114 cm in front of the slit. Find the widths of the first and second maxima on each side of the central maximum. w1 = mm (1st maxima) w2 = mm (2nd maxima)arrow_forward
- Light of wavelength 740.0 nm passes through a single slit of width 1.95 µm, and a diffraction pattern is observed on a screen 25.5 cm away. Determine the relative intensity of light I/Imax at 14.0 cm away from the central maximum.arrow_forwardA diffraction pattern is produced on a screen 1.40 m from a single slit, using monochromatic light of wavelength 5.00 x 102 nm. The distance from the center of the central maximum to the first - order maximum is 3.00 mm. Calculate the slit width. Hint: Assume that the first - order maximum is halfway between the first - and second - order minima.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON