Two horizontal metal plates, each 100 mm square, are aligned 10.0 mm apart, with one above the other. They are given equal-magnitude charges of opposite sign so that a uniform downward electric field of 2 000 N/C exists in the region between them. A particle of mass 2.00 x 10-16 kg and with a positive charge of 1.00 x 10-6 C leaves the center of the bottom negative plate with an initial speed of 1.00 x 105 m/s at an angle of 37.0° above the horizontal. Describe the trajectory of the particle. Which plate does it strike? Where does it strike, relative to its starting point?
Two horizontal metal plates, each 100 mm square, are aligned 10.0 mm apart, with one above the other. They are given equal-magnitude charges of opposite sign so that a uniform downward electric field of 2 000 N/C exists in the region between them. A particle of mass 2.00 x 10-16 kg and with a positive charge of 1.00 x 10-6 C leaves the center of the bottom negative plate with an initial speed of 1.00 x 105 m/s at an angle of 37.0° above the horizontal. Describe the trajectory of the particle. Which plate does it strike? Where does it strike, relative to its starting point?
Related questions
Question
Two horizontal metal plates, each 100 mm square, are aligned 10.0 mm apart, with one above the other. They are given equal-magnitude charges of opposite sign so that a uniform downward electric field of 2 000 N/C exists in the region between them. A particle of mass 2.00 x 10-16 kg and with a positive charge of 1.00 x 10-6 C leaves the center of the bottom negative plate with an initial speed of 1.00 x 105 m/s at an angle of 37.0° above the horizontal. Describe the trajectory of the particle. Which plate does it strike? Where does it strike, relative to its starting point?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images