Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question
The gas tank is made from A-36 steel and has an inner diameter of 1.50 m. If the tank is designed to withstand a pressure of 5 MPa, determine the required minimum wall thickness to the nearest millimeter using (a) the maximum shear stress theory, and (b) maximum distortion energy theory. Apply a factor of safety of 1.5 against yielding.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 5 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The gas storage tank is fabricated by bolting together two half cylindrical thin shells and two hemispherical shells as shown. If the tank wall has a thickness of 50 mm for cylindrical and hemispherical shells, The bolts were installed as 40 bolts/meter. The tank and the 25 mm diameter bolts are made from material having an allowable normal stress of 150 MPa and 250 MPa, respectively. The tank has an inner diameter of 4 m. What is the maximum pressure that tank can contain.arrow_forwardA spherical gas tank has an inner radius of r = 1.5 m. If it is subjected to an internal pressure of p = 420 kPa, determine its minimum required thickness if the maximum normal stress is not to exceed 12 MPa.arrow_forwardigure 200 mm 400 mm 20 mm A Section a-a < F₁ 1 of 1 F₂ Determine the state of stress at point A on the cross section of the pipe assembly at section a -a. Take F₁ = 1540 N, F₂ = 1030 N (Figure 1) Express your answer to three significant figures and include the appropriate units. Enter negative value in the case of compression and positive in the case of tension. 4 σA= Part B μA Value Submit Request Answer (Tay) A = Find (Tzy) A- Express your answer to three significant figures and include the appropriate units. μA Units Value Units ? H ?arrow_forward
- At a temperature of 20 °C there is a gap ∆ = 0.2 mm between the lower end of the brass bar and the slab rigid suspended from the two steel bars. Neglecting the mass of the slab, determine the stress in each bar when the temperature of the assembly rises to 100°C Answer: σsteel = 15.462MPa (t), σbronze= 20.615MPa(c),arrow_forwardThe device is used to measure a change in temperature. Bars AB and CD are made of A-36 steel and 2014-T6 aluminum alloy respectively. When the temperature is at 65° F, ACE is in the horizontal position. Figure 1.5 in. -0.25 in. C 3 in. 1 of 1 اساساسا Part A Determine the vertical displacement of the pointer at E when the temperature rises to 160 ° F. (Figure 1) Express your answer with the appropriate units. SE = Value Submit Request Answer Provide Feedback Units ?arrow_forward3) A thin-walled cylindrical pressure vessel of diameter of 1.5 m is subjected to an internal pressure that varies continuously from p_min= 0.8MPa to p_max = 4 MPa. Determine the pressure vessel thickness, t, if the pressure vessel is made from steel with an ultimate strength S_u=400 MPa, a yield strength S_y=300MPa, and an endurance limit S_n-150MPa and a safety factor of two is desired. Use Modified Goodman and the maximum normal stress theory.arrow_forward
- please do not round it off until the final answerarrow_forwardThe pressure tank shown is fabricated from spirally-wrapped metal plates that are welded at the seams in the orientation shown. The tank has an inside diameter of 48 in. and a wall thickness of 0.375 in. Determine the largest allowable gage pressure if the allowable shear stress parallel to the weld is 3.10 ksi.arrow_forwardThe piston-cylinder assembly above has a wall thickness of 0.125" and an outer radius ro= 2 in. If the internal gauge pressure is 1.2 ksi, determine the maximum normal stress in the piston wall. 18 ksl O9 ksi 36 ksi N/A (this does not meet the criteria of a "thin-walled" pressure vessel)arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY