Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question
The aluminum (E=15x10^10psi, α=11.6x10^-6/°F) shell is fully bonded to the brass (E=10.6x10^6psi, α=12.9x10^-6/°F) sore, and the assembly is unstressed at a temperature of 78°F. Considering only axial deformations, determine the stress when the temperature reaches 180°F (a) in the brass core (b) in the aluminum shell
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Similar questions
- At a temperature of 20 °C there is a gap ∆ = 0.2 mm between the lower end of the brass bar and the slab rigid suspended from the two steel bars. Neglecting the mass of the slab, determine the stress in each bar when the temperature of the assembly rises to 100°C Answer: σsteel = 15.462MPa (t), σbronze= 20.615MPa(c),arrow_forwardParvinbhaiarrow_forwardDetermine the principal stresses at points A and B of the cylinder. Consider: L = 70 mm; d = 20 mm; F = 12 kN; P = 15 kN; T = 800 Nm.arrow_forward
- Two aluminum plates, each having a width of b = 8.0 in. and a thickness of t = 0.750 in., are welded together as shown. Assume a = 4.0 in. For a load of P = 75 kips, determine (a) the normal stress that acts perpendicular to the weld and (b) the magnitude of the shear stress that acts parallel to the weld. Answer: O= P T = 1 i 1 ksi ksi b Parrow_forward• Bars (1) have a cross-sectional area of A₁ = 0.65 in.2 and a length, L₁= 7 ft. • Bars (1) are made of cast iron with an elastic modulus of E₁ = 24,000 ksi, a coefficient of thermal expansion, a₁ = 12.3 x 10-6/°F and yield strength of oy = 120 ksi. • Bar (2) has a cross-sectional area of A₂ = 1.45 in.² and a length, L₂ = 5.5 ft. • Bar (2) is made of stainless steel with a coefficient of thermal expansion, a₂ = 10.6 × 10-6/°F. • The stress-strain diagram provided below presents the results of the stainless steel's (i.e., Bar (2)) bar tension test. • There is a gap of A = 0.1 in. in the connection at B and a = 3 ft. • All bars are unstressed before a load P = 12 kips is applied and the temperature increases by AT = 40°F. Stress-strain diagram for stainless steel bar: (1) a Stress (ksi) L2 Rigid bar 120 100 80 60 40 20 0 0 0 B (2) P a (1) C Upper scale L₁ Connection details at node C Lower scale. C 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.006 0.008 0.010 0.012 0.014 0.002 0.004 Strain…arrow_forwardThe assembly shown consists of an aluminum shell (Ea = 70 GPa, αa = 23.6 × 10−6/°C) fully bonded to a steel core (Es = 200 GPa, αs = 11.7 × 10−6/°C) and the assembly is unstressed at a temperature of 20°C. Considering only axial deformations, determine the stress in the aluminum when the temperature reaches 185°C. The stress in the aluminum is − _____ MPa.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY