Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 7 steps with 7 images
Knowledge Booster
Similar questions
- A uniform thin rod of length 0.300 m and mass 3.10 kg can rotate in a horizontal plane about a vertical axis through its center. The rod is at rest when a 3.00 g bullet traveling in the rotation plane is fired into one end of the rod. As viewed from above, the bullet's path makes angle 0 = 60.0° with the rod. If the bullet lodges in the rod and the angular velocity of the rod is 12.0 rad/s immediately after the collision, what is the bullet's speed just before impact? Axis Number Units 2.80 m/sarrow_forwardThe outstretched hands and arms of a figure skater preparing for a spin can be considered a slender rod pivoting about an axis through its center (Figure 1). When his hands and arms are brought in and wrapped around his body to execute the spin, the hands and arms can be considered a thin-walled hollow cylinder. His hands and arms have a combined mass 8.0 kg. When outstretched, they span 1.7 m; when wrapped, they form a thin- walled hollow cylinder of radius 23 cm. The moment of inertia about the rotation axis of the remainder of his body is constant and equal to 0.4 kg. m². For related problemsolving tips and strategies, you may want to view a Video Tutor Solution of Anyone can be a ballerina. Figure 1 of 1 TI Part A If his original angular speed is 0.50 rev/s, what is his final angular speed? Express your answer in revolutions per second. 15| ΑΣΦ W2 = 1.03 Submit Previous Answers Request Answer X Incorrect; Try Again; 8 attempts remaining Provide Feedback ? rev/sarrow_forwardA thin, uniform rod has one of its end mounted at 3. point P and is free to rotate about an axle that passes through P in a direction perpendicular to the figure. The rod is of length 1.0 m and mass 0.3 kg. It is released from rest at the horizontal position shown in the figure. A small ball of mass 0.1 kg is placed on a frictionless floor 1.0 m below point P such that when the rod reaches the vertical position, it just hits the ball. Assume that once the rod hits the ball, they stick together and swing up until they come to a momentary stop at an angle 0. (a) perpendicular to the figure? You can check the table on slide 27 of the lecture notes if needed. (b) problem from the perspective of energy conservation] (c) analyze the problem from the perspective of conservation of angular momentum] What is the rotational inertia of the rod about the axle passing through P and What is the angular speed of the rod just before it hits the ball? [Hint: analyze the What is the angular speed of the…arrow_forward
- The figure shows a jet engine suspended beneath the wing of an airplane. The weight of the engine is 11900 N and acts as shown in the figure. In flight the engine produces a thrust of 68600 N that is parallel to the ground. The rotational axis in the figure is perpendicular to the plane of the paper. With respect to this axis, find the magnitude of the torque due to (a) the weight and (b) the thrust.arrow_forwardA bullet with mass of 25 grams traveling at speed of 185m/s hits the end of a rod as shown. The rod has a mass of 3 kg and a length of 80 cm, and it is free to spin about a perpendicular axis located at its center. If the bullet remains stuck in the end of the rod, what will be the angular speed of the rod after the bullet hits it? Let MM be the mass of the rod and mm be the mass of the bullet. The moment of inertia of a rod rotating about a perpendicular axis through its center is (1/12)ML2.(1/12)ML2. (Hint: After the bullet is embedded in the rod, it contributes m(L/2)2m(L/2)2to the moment of inertia of the rod.)arrow_forwardTorque You are playing with the masking tape that came in your lab box. This tape has a thickness that is not small compared to the radius. You measure it and it has an outer radius of 6.40 cm and an inner radius of 3.95 cm. You weigh the tape roll and find that it has a mass of 79.5 g. Now you roll the tape like you would a hoop (Rolling tape 1 (00:05)). The video illustrates the idea of the motion - please do NOT use it for numerical values. You find that the tape starts from rest, and has a torque applied when you push on it with your finger. You push on the outer edge (perpendicular to the radial direction). This causes the tape to accelerate. After 0.75 seconds, you find that the tape has an angular velocity of 53.0 rpm (rotations / minute). What is the Force you applied to the tape to start the rotation? Your answer should have the following: 2 Decimal Places Correct SI Units Appropriate Signs for Vector quantity answers Answers must be in the following format: Written out and…arrow_forward
- A sanding disk with a rotational inertia of 1.2 x 10-3kgm2 is attached to an electric drill whose motor delivers a torque of 16 Nm. If the torque is applied for 25 ms and the disk starts from rest, what is the magnitude of the angular velocity of the sanding disk? Use the rotational version of the Impulse Momentum Theorem. Take note of the time units.arrow_forwardEach of the following objects has a radius of 0.168 m and a mass of 2.67 kg, and each rotates about an axis through its center (as in this table) with an angular speed of 40.1 rad/s. Find the magnitude of the angular momentum of each object. a hoop a solid cylinder a solid sphere a hollow spherical shellarrow_forwardNeeds Complete typed solution with 100 % accuracy.arrow_forward
- The figure shows a device that can be used to measure the speed of a bullet. The device consists of two rotating disks, separated by a distance of d = 0.922 m, and rotating with an angular speed of 90.8 rad/s. The bullet first passes through the left disk and then through the right disk. It is found that the angular displacement between the two bullet holes is = 0.360 rad. From these data, determine the speed of the bullet. Number i Bullet Units 19 kd + Motorarrow_forwardReview. A thin, cylindrical rod ℓ = 24.0 cm long with mass m = 1.20 kg has a ball of diameter d = 8.00 cm and mass M = 2.00 kg attached to one end. The arrangementis originally vertical and stationary, with the ball at the top as shown in Figure P10.54. The combination is free to pivot about the bottom end of the rod after being given a slight nudge. (a) After the combination rotates through 90 degrees, what is its rotational kinetic energy? (b) What is the angular speed of the rod and ball? (c) What is the linear speed of the center of mass of the ball? (d) How does it compare with the speed had the ball fallen freely through the same distance of 28 cm?arrow_forwardThe left-hand end of a uniform rod of length L and mass m is attached to a vertical wall by a frictionless hinge. The rod is held at an angle θ above the horizontal by a horizontal wire that runs between the wall and the right-hand end of the rod. The wire breaks and the rod rotates about the hinge. What is the angular speed of the rod as the rod passes through a horizontal position? (Express your answer in terms of some or all of the variables m, g, L, θ.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios