Human Heredity: Principles and Issues (MindTap Course List)
11th Edition
ISBN: 9781305251052
Author: Michael Cummings
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Topic Video
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.Similar questions
- A couple was referred for genetic counseling because they wanted to know the chances of having a child with dwarfism. Both the man and the woman had achondroplasia (MIM 100800), the most common form of short-limbed dwarfism. The couple knew that this condition is inherited as an autosomal dominant trait, but they were unsure what kind of physical manifestations a child would have if it inherited both mutant alleles. They were each heterozygous for the FGFR3 (MIM 134934) allele that causes achondroplasia. Normally, the protein encoded by this gene interacts with growth factors outside the cell and receives signals that control growth and development. In achrodroplasia, a mutation alters the activity of the receptor, resulting in a characteristic form of dwarfism. Because both the normal and mutant forms of the FGFR3 protein act before birth, no treatment for achrondroplasia is available. The parents each carry one normal allele and one mutant allele of FGRF3, and they wanted information on their chances of having a homozygous child. The counsellor briefly reviewed the phenotypic features of individuals with achondroplasia. These include facial features (large head with prominent forehead; small, flat nasal bridge; and prominent jaw), very short stature, and shortening of the arms and legs. Physical examination and skeletal X-ray films are used to diagnose this condition. Final adult height is approximately 4 feet. Because achondroplasia is an autosomal dominant condition, a heterozygote has a 1-in-2, or 50%, chance of passing this trait to his or her offspring. However, about 75% of those with achondroplasia have parents of average size who do not carry the mutant allele. In these cases, achondroplasia is due to a new mutation. In the couple being counseled, each individual is heterozygous, and they are at risk for having a homozygous child with two copies of the mutated gene. Infants with homozygous achondroplasia are either stillborn or die shortly after birth. The counselor recommended prenatal diagnosis via ultrasounds at various stages of development. In addition, a DNA test is available to detect the homozygous condition prenatally. Should the parents be concerned about the heterozygous condition as well as the homozygous mutant condition?arrow_forwardA couple was referred for genetic counseling because they wanted to know the chances of having a child with dwarfism. Both the man and the woman had achondroplasia (MIM 100800), the most common form of short-limbed dwarfism. The couple knew that this condition is inherited as an autosomal dominant trait, but they were unsure what kind of physical manifestations a child would have if it inherited both mutant alleles. They were each heterozygous for the FGFR3 (MIM 134934) allele that causes achondroplasia. Normally, the protein encoded by this gene interacts with growth factors outside the cell and receives signals that control growth and development. In achrodroplasia, a mutation alters the activity of the receptor, resulting in a characteristic form of dwarfism. Because both the normal and mutant forms of the FGFR3 protein act before birth, no treatment for achrondroplasia is available. The parents each carry one normal allele and one mutant allele of FGRF3, and they wanted information on their chances of having a homozygous child. The counsellor briefly reviewed the phenotypic features of individuals with achondroplasia. These include facial features (large head with prominent forehead; small, flat nasal bridge; and prominent jaw), very short stature, and shortening of the arms and legs. Physical examination and skeletal X-ray films are used to diagnose this condition. Final adult height is approximately 4 feet. Because achondroplasia is an autosomal dominant condition, a heterozygote has a 1-in-2, or 50%, chance of passing this trait to his or her offspring. However, about 75% of those with achondroplasia have parents of average size who do not carry the mutant allele. In these cases, achondroplasia is due to a new mutation. In the couple being counseled, each individual is heterozygous, and they are at risk for having a homozygous child with two copies of the mutated gene. Infants with homozygous achondroplasia are either stillborn or die shortly after birth. The counselor recommended prenatal diagnosis via ultrasounds at various stages of development. In addition, a DNA test is available to detect the homozygous condition prenatally. What if the couple wanted prenatal testing so that a normal fetus could be aborted?arrow_forwardFamilial retinoblastoma, a rare autosomal dominant defect, arose in a large family that had no prior history of the disease. Consider the following pedigree (the darkly colored symbols represent affected individuals): a. Circle the individual(s) in which the mutation most likely occurred. b. Is the person who is the source of the mutation affected by retinoblastoma? Justify your answer. c. Assuming that the mutant allele is fully penetrant, what is the chance that an affected individual will have an affected child?arrow_forward
- Please consider the following pedigree. Assume that people who marry in to the family do not carry the allele unless otherwise indicated. Assume complete penetrance. I II 5 6 III 6 IV 1 2 a. Is it possible for the inheritance pattern for the trait illustrated in this pedigree to be as a result of each of the following? Answer yes or no. (i) an autosomal recessive allele (AR) (ii) an autosomal dominant allele (AD) (iii) a X-linked recessive allele (XR) (iv) a X-linked dominant allele (XD) b. Provide a genotype for individual III-6 for the most likely mode of inheritance as determined in (a).arrow_forwardThere are several possible modes of inheritance through which traits can be inherited. The following pedigree charts represent four different inheritance patterns. Match each type of inheritance with the correct pedigree numbered above. (Use each number only once.)X-linked recessive X-linked dominant Autosomal recessive Autosomal dominantarrow_forwardThe following pedigree shows the inheritance of a human disorder. Affected individuals are shown with filled symbols. II III 2 3 5 Based on the pedigree, propose the least likely inheritance pattern of the disease among autosomal dominance, autosomal recessive, X-linked dominance and X-linked recessive. Your choice of answer can be impossible and possible. Explain your answer by giving the evidence that supports or opposes each mode of inheritance. You can reconstruct the table shown below and draw the pedigree in your answer script. Write the possible genotype of each individual in the pedigree for each inheritance pattern proposed. Mode of Possibility Explanations Pedigree inheritance Autosomal dominance Autosomal recessive X-linked dominance X-linked recessivearrow_forward
- Answer the following questions given the pedigree below. Please assume that no other mutations are occurring, complete penetrance, and that the individual marked with an asterisk (*) doesn’t carry the allele causing the affected phenotype. Q2) What are the genotypes of the following individuals listed in the table below. Use the uppercase “A” to represent the dominant allele and lowercase “a” for the recessive allele. Individual All possible genotypes I-2 II-1 IV-2 V-2 II-2 II-3arrow_forwardWhat is the most likely pattern of inheritance for this disorder? (Is it autosomal dominant? Autosomal recessive? X-linked dominant? X-linked recessive? Y-linked? Mitochondrial?) Please include two specific pieces of evidence, present within the pedigree, that indicate that this pattern is most likely, as opposed to any other potential pattern. You may assume that the gene responsible for the trait is fully penetrant.arrow_forwardPlease draw it out so I understand how it's suppose to be drawnarrow_forward
- The pedigree below represents the inheritance of a rare genetic disorder (members joining the pedigree are not carriers). Consider the following pedigree and answer questions (i) to (vii) below. The allele descriptors are B/b. What is the mode of inheritance in this pedigree ? Y-linked inheritance X-linked recessive inheritance X-linked dominant inheritance Autosomal recessive inheritance Autosomal dominant inheritance What is the genotype of individual III-2 ? a) XbXb b) XBXB c) XBXb d) Bb e) bb What is the genotype of individual IV-3 ? a) XbXb b) XBXB c) XBXb d) Bb e) bb Individual IV-4 and an unaffected woman is planning a family. What is the probability that their first child will be phenotypically normal ? a) chance that the first child will be phenotypically normal. b) chance that the first child will be phenotypically normal. c) chance that the first female child will be phenotypically normal; all male children will be phenotypically normal. d) chance that the…arrow_forwardHelp me create a pedigree of this information: Pedigree analysis: Generation 1: Normal parents (AA x AA) Generation 2: Carrier parents (AA x AS) Generation 3: Affected child (AS x AS) Generation 4: Affected grandchild (SS) This pedigree has two normal parents in the first generation. Second generation carriers carry the sickle cell trait from one parent. The disease is 25% more likely to be inherited in the third generation if both parents have the 'S' allele. If both parents have the 'S' allele, their children will have sickle cell anemia in the fourth generationarrow_forwardPlease answer the questions provided in the image.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Human Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage Learning
Human Heredity: Principles and Issues (MindTap Co...
Biology
ISBN:9781305251052
Author:Michael Cummings
Publisher:Cengage Learning