College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Components of some computers communicate with each other through optical fibers having an index of refraction n = 1.45. What time in nanoseconds is required for a signal to travel 0.180 m through such a fiber? ns
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If a beam of light has a frequency of 5.04 E 14, what is its wavelength? a 3.00 E −8 m b 5.95 E 7 m c 6.70 E 7 m d 1.15 E 6 marrow_forwardA ray of light travels across a liquid-to-glass interface. If the indices of refraction for the liquid and glass are, respectively, 1.75 and 1.52, what is the critical angle at this interface? O 30.0° 52.2° 60.3° 0 O critical angle does not existarrow_forwardChapter 25: Problem 9: A beam of light moves through a slab of glass as shown in the figure. The index of refraction of the glass is ng = 1.5. The index of refraction of air is na = 1. The incident angle of the light is θi = 44°. a) If the refraction angle of the light at the upper surface of the slab is θ1, express sinθ1 in terms of θi, na, and ng. b) The incident angle of the light on the lower surface of the slab is θ2. What is the relation between θ1 and θ2? c) The refraction angle of the light on the lower surface of the slab is θf. Express sin(θf) in terms of θ2, na, and ng. d) What is the final angle θf in degrees?arrow_forward
- E₁ H₁ X OR ET E₁ tTE = ER HT ET HR ns Transverse Electric, TE nu The Figure above shows TE polarised light incident on a dielectric interface. Light is in- cident from the upper left, in a sourced medium with refractive index ng at an angle of incidence 0₁, onto an unsourced medium with refractive index nu, and transmitted at angle of refraction T. Both media are non-magnetic. The vectors H₁, HR, HT are the magnetic fields for incident, reflected and transmitted waves respectively; the corresponding E fields point into the paper, as shown by the arrow-tail symbols. State the boundary conditions on the E and H fields, then use these to prove that the amplitude transmission coefficient tre is given by Z 2ng cos 01 ng cos 0₁ + nu cos OT (Justify any assumption relating impedance to refractive index).arrow_forwardA beam of light goes from the air into the water with incident angle θa = 34 degrees. The index of refraction of water is nw = 1.3. The index of refraction of air is na = 1. a) Solve for the numerical value of θw in degrees.arrow_forward. What is the speed of light in water? In glycerine? The refractive index of light in water is 1.333 and in glycerine is 1.473. Speed to light in vacuum is 3×10 m/s. V watei V glycerine m S m Sarrow_forward
- A fiber optic is made by cladding a thin fiber core of refractive index n₁ = 1.45 with a material of refractive index n₂ = 1.38. What is the maximum incident angle, 0, so that the light ray is totally internally reflected inside the fiber?arrow_forwardA coating is being applied to reduce the reflectivity of a pane of glass to light with a frequency of 4.14 × 1014 Hz that is incident normally on the pane. If the material has an index of refraction of 1.34 and the glass has an index of refraction of 1.537, what is the minimum thickness the coating should have in nanometers? Please keep one decimal place in your answer. (c = 3.00 × 108 m/s)arrow_forwardThe index of refraction for violet light in silica flint glass is 1.66, and that for red light is 1.62. A) What is the angular spread (in degrees) of visible light passing through a prism of apex angle 60.0° if the angle of incidence is 51.0°? B) What is the angular spread (in degrees) of visible light passing through a prism of apex angle 60.0° if the angle of incidence is 90°?arrow_forward
- A light beam is traveling through an unknown substance. When it strikes a boundary between that substance and the air (nair - 1), the angle of reflection is 34.0° and the angle of refraction is 46.0°. What is the index of refraction n of the substance? n =arrow_forwardHomework 11, Problem 7arrow_forward1) A pulse of light takes 3.00 ns to travel through air from an emitter to a detector. When a piece of transparent material with a length of 35.0 cm is introduced into the light's path, the pulse takes 3.40 ns to travel that same distance. The piece of transparent material is held so that the pulse never changes direction. What is the speed of light in the transparent material? (in ns please) 2) A small red LED is placed on the principal axis 6.00 cm from a concave mirror that has a radius of curvature of 14.0 cm. The LED can be considered to be a point source. Find the image distance for the image of the LED that is created by the mirror. (in cm please. Image attached below) I appreciate the help. I've attempeted the first question multiple times and always end up with the wrong answer so I don't know what equation to use.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON