H.W3: The following three parallel-connected three-phase loads are fed by a balanced three phase source: Load 1: 250 kVA, 0.8 pf lagging Load 2: 300 kVA, 0.95 pf leading Load 3: 450 kVA, unity pf If the line voltage is 13.8 kV, calculate the line current and the power factor of the source. Assume that the line impedance is zero. Ans: 39.19 A, 0.9982 (lagging)

Power System Analysis and Design (MindTap Course List)
6th Edition
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Chapter3: Power Transformers
Section: Chapter Questions
Problem 3.23P: Figure 3.32 shows the oneline diagram of a three-phase power system. By selecting a common base of...
icon
Related questions
Question
100%
H.W3: The following three parallel-connected three-phase loads are fed by a
balanced three phase source:
Load 1: 250 kVA, 0.8 pf lagging
Load 2: 300 kVA, 0.95 pf leading
Load 3: 450 kVA, unity pf
If the line voltage is 13.8 kV, calculate the line current and the power factor of
the source. Assume that the line impedance is zero.
Ans: 39.19 A, 0.9982 (lagging)
Transcribed Image Text:H.W3: The following three parallel-connected three-phase loads are fed by a balanced three phase source: Load 1: 250 kVA, 0.8 pf lagging Load 2: 300 kVA, 0.95 pf leading Load 3: 450 kVA, unity pf If the line voltage is 13.8 kV, calculate the line current and the power factor of the source. Assume that the line impedance is zero. Ans: 39.19 A, 0.9982 (lagging)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Analysis of Single Phase and Three Phase System
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Power System Analysis and Design (MindTap Course …
Power System Analysis and Design (MindTap Course …
Electrical Engineering
ISBN:
9781305632134
Author:
J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:
Cengage Learning