MATLAB: An Introduction with Applications
6th Edition
ISBN: 9781119256830
Author: Amos Gilat
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Find the y-intercept of the equation of the regression line for the following data:
Consumer Price Index (X) | 30.2 | 48.3 | 112.3 | 162.2 | 191.9 | 197.8 |
Cost of Pizza(Y) | 0.15 | 0.35 | 1.00 | 1.25 | 1.75 | 2.00 |
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- The table lists the cost in millions of dollars for a 30-second commercial for selected years. Year 1994 1998 2004 2008 2011 Cost 33.7 34.2 35.0 35.5 35.9 a. Find a linear function f that models the data. b. Estimate the cost in 2010 and compare the estimate to the actual value of $36.6 million. Did your estimate involve interpolation or extrapolation? a. Use linear regression to determine the equation of the line that best fits the data. The linear function is f(x) = (Type an expression using x as the variable. Use integers or decimals for any numbers in the expression. Round to three decimal places as needed.)arrow_forwardFit a linear regression model for the following data.arrow_forward1.arrow_forward
- The following chart shows the actual sales for the last 12 months for a given company. Assume that sales are best fit by a linear trend and you can use single linear regression to set up a forecasting model. Using the sales data answer below questions (justify your answers): A.What would be the typical linear regression equation for the number of sales? B.Make the sales forecast for period 15 of next year. C. Make the sales forecast for period 17 of next year. D. What is the standard error for the data?arrow_forwardListed below are foot lengths (mm) and heights (mm) of males. Find the regression equation, letting foot length be the predictor (x) variable. Find the best predicted height of a male with a foot length of 273.3 mm. How does the result compare to the actual height of 1776 mm? Foot Length 281.9 278.3 253.2 258.7 278.7 257.8 274.2 262.2 Height 1784.8 1771.0 1675.6 1645.9 1858.7 1710.1 1789.2 1737.4 the regression equation is y=enter your response here+enter your response herex. (Round the y-intercept to the nearest integer as needed. Round the slope to two decimal places as needed.) The best predicted height of a male with a foot length of 273.3 mm is enter your response here mm. (Round to the nearest integer as needed.)arrow_forwardListed below are foot lengths (mm) and heights (mm) of males. Find the regression equation, letting foot length be the predictor (x) variable. Find the best predicted height of a male with a foot length of 272.7 mm. How does the result compare to the actual height of 1776 mm? Foot Length 282.3 277.8 252.8 258.7 279.0 258.4 274.1 261.7 Height 1785.0 1771.0 1675.7 1645.7 1859.3 1710.2 1789.2 1737.0 The regression equation is ŷ = + (x. (Round the y-intercept to the nearest integer as needed. Round the slope to two decimal places as needed.) The best predicted height of a male with a foot length of 272.7 mm is (Round to the nearest integer as needed.) How does the result compare to the actual height of 1776 mm? O A. The result is close to the actual height of 1776 mm. O B. The result is exactly the same as the actual height of 1776 mm. O C. The result is very different from the actual height of 1776 mm. O D. The result does not make sense given the context of the data. C mm.arrow_forward
- Develop a scatterplot and explore the correlation between customer age and net sales by each type of customer (regular/promotion). Use the horizontal axis for the customer age to graph. Find the linear regression line that models the data by each type of customer. Round the rate of changes (slopes) to two decimal places and interpret them in terms of the relation between the change in age and the change in net sales. What can you conclude? Hint: Rate of Change = Vertical Change / Horizontal Change = Change in y / Change in xarrow_forwardPerform a linear regression analysis on the following data and determine the "a" coefficient (i.e., slope): Y 4.99 22.19 1.96 9.89 2.98 11 9 40.46 4.04 18.93 6.06 25 0.88 0.19 8.02 34.02 6.97 28.03arrow_forwardWhich of the following statements best describes linear regression? A measure of the degree of dependence between two variables. A statistical technique using pairs of data and identifying a line which ‘best fits’ all of the pairs of observations. A measure of the proportion of changes in the dependent variable which can be explained by a change in the independent variable. Shows individual costs against their associated activity levels but makes no attempt to identify a linear relationship between them.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman