College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A film of soapy water (n=1.33) on top of a plastic cutting board has a thickness of 278 nm. What is the wavelength of the most strongly reflected if it is illuminated perpendicular to its surface? Round your answer to 0 decimal places.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A perfectly flat piece of glass (n = 1.50) is placed over a perfectly flat piece of black plastic (n = 1.20) as shown in the figure a. They touch at A. Light of wavelength 600 nm is incident normally from above. The location of the dark fringes in the reflected light is shown on the sketch of figure b. (a) How thick is the space between the glass and the plastic at B? (b) Water (n = 1.33) seeps into the region between the glass and the plastic. How many dark fringes are seen when all the air has been displaced by water? (The straightness and equal spacing of the fringes is an accurate test of the flatness of the glass.) (a) (b) A Glass =1.50 Plastic n=1.20 Barrow_forwardA flat piece of glass is held stationary and horizontal above the highly polished, flat top end of a 9.00-cm-long vertical metal rod that has its lower end rigidly fixed. The thin film of air between the rod and glass is observed to be bright by reflected light when it is illuminated by light of wavelength 515 nm. As the temperature is slowly increased by 25.5°C, the film changes from bright to dark and back to bright 200 times. What is the coefficient of linear expansion of the metal?arrow_forwardair 1. n = 1 [a] The figure shows a soap film of thickness dį in air. Light impinges on the film with an angle of incidence 01 and is reflected and refracted at the interfaces. Rays 1 and 2 represents reflected light, while rays 3 and 4 represent light that has been transmitted into the glass. soap \[c] n, = 1.33 |d [b] air n= 1 3 4 The bracketed letters (a], [b], and [c] indicate reflections at the air-soap, and soap-air interfaces. For which of these reflections does a phase change of n occur? Check all that apply. [a] [b] O (c)arrow_forward
- A child is playing with a bubble wand, which is a large rectangular wire frame that contains a soap film. The child holds the wand vertically, which causes the film to be thinner at the top and thicker at the bottom, forming a wedge shape. Assume a thickness of essentially zero at the top. White light shines on the film with approximately normal incidence. The child views the reflected light from the film and sees the first violet interference band at a distance of 3.00 cm from the top edge of the film. The index of refraction of the soap film is the same as that of water, n = 1.33, and the wavelength of violet light is 1 = 403 nm. (a) At what distance (in cm) from the top edge of the film does the child see the first red (A = 666 nm) interference band? cm (b) What is the thickness (in nm) of the soap film at the location of the first violet interference band? nm What is the thickness (in nm) of the soap film at the location of the first red interference band? nm (c) What is the wedge…arrow_forwardThe rhinestones in costume jewelry are glass with index of refraction 1.50. To make them more reflective, they are often coated with a layer of silicon monoxide of index of refraction 2.00. What is the minimum coating thickness needed to ensure that light of wavelength 467 nm and of perpendicular incidence will be reflected from the two surfaces of the coating with fully constructive interference? Number Unitsarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON