College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A flat piece of glass is held stationary and horizontal above the highly polished, flat top end of a 9.00-cm-long vertical metal rod that has its lower end rigidly fixed. The thin film of air between the rod and glass is observed to be bright by reflected light when it is illuminated by light of wavelength 515 nm. As the temperature is slowly increased by 25.5°C, the film changes from bright to dark and back to bright 200 times. What is the coefficient of linear expansion of the metal?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The plane z = 0 separates two media: glass(nglass = 1.51 for z < 0) and water (nH20 = 1.33 for z > 0). The optical beam of a helium-cadmium (He-Cd) laser has a wavelength in vacuum of 325 nm. Consider that the laser beam propagates in the x-z plane from the glass side towards the glass/water interface at an angle of incidence of 30° (angle between the incident beam and the normal to the interface). Determine the Cartesian components of the k-vector (kx, ky, kz) for the incident reflected, and transmitted beams.arrow_forwardHow to solve this problemarrow_forwardRed light having a wavelength of 690 nm (in air) is vertically incident on a thin film of oil that has an index of refraction of 1.19. The film of oil floats above water (having an index of refraction of 1.30). The red light is brightly reflected. The minimum (nonzero) thickness of the film of oil is 580 nm. 145 nm. 290 nm. 345 nm.arrow_forward
- An extremely thin sheet of glass is being inspected at the camera store. Illuminated by white light at near-normal incidence, the film-like sheet is 0.415 µm thick and has air on both sides. If the glass has a refractive index of 1.52, what wavelength of visible light (in nm) does it reflect most strongly? (The wavelengths of visible light range from 400 to 700 nm.)arrow_forwardThe pupil of an eagle’s eye has a diameter of 6.0 mm. Two field mice are separated by 0.010 m. From a distance of 202 m, the eagle sees them as one unresolved object and dives toward them at a speed of 15 m/s. Assume that the eagle’s eye detects light that has a wavelength of 550 nm in vacuum. How much time passes until the eagle sees the mice as separate objects?arrow_forwardA broad beam of light of wavelength 527 nm is sent directly downward through the glass plate (n = 1.46) in Figure (a). That plate and a plastic plate (n = 1.17) form a thin wedge of air that acts as a thin film. An observer looking down through the top plate sees the fringe pattern shown in Figure (b), with dark fringes centered on the ends. (a) What is the thickness (in m) of wedge at the right end? (b) How many dark fringes will the observer see if the air between the plates is replaced with a liquid with n = 1.26? Incident light (a) Number (b) Number i Units Units (a) (b)arrow_forward
- For light with 1 = 10-6 m what is the thickness of a coating with n = 1.225 that reduces normal incidence reflection from glass (nGlass =1.5) to zero? O 2.5 x 10-7 m O None of these O 4.08 x 10-7 m O 2.04 x 10 7 m O 8.16 x 10 7 O 3.33 x 10 7 m O 5 x 10 7 marrow_forwardThe pupil of an eagle's eye has a diameter of 6.0 mm. Two field mice are separated by 0.010 m. From a distance of 197 m, the eagle sees them as one unresolved object and dives toward them at a speed of 20 m/s. Assume that the eagle's eye detects light that has a wavelength of 550 nm in vacuum. How much time passes until the eagle sees the mice as separate objects? t= iarrow_forwardYou are conducting a single-slit diffraction experiment with light of wavelength l. What appears, on a distant viewing screen, at a point at which the top and bottom rays through the slit have a path length difference equal to (a) 5l and (b) 4.5l?arrow_forward
- An optical coating with an index of refraction of 1.23 is applied to glass with an index of refraction of 1.50. If the thickness of this coating is 184nm, what wavelength(s) of visible light in air are most strongly reflected from this surface? Visible wavelengths range from 350nm to 700nm.arrow_forwardMonochromatic light of wavelength 461 nm from a distant source passes through a slit that is 0.0310 mm wide. In the resulting diffraction pattern, the intensity at the center of the central maximum (θ = 0o) is 1.00×10−4 W/m^2. What is the intensity at a point on the screen that corresponds to θ = 1.20o?arrow_forwardA thin film of glycerin (n = 1.473) of thickness 486 nm with air on both sides is illuminated with white light at near normal incidence. What wavelengths will be strongly reflected in the range 300 nm to 700 nm? nm (smallest value) nm nm (largest value)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON