College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
f the initial interstellar cloud in star formation has a mass sufficient to form hundreds of stars, how does a single star form from it?
The cloud is disrupted by rotation so that it reduces its mass down to that of a typical star.
One star forms and the rest of the matter goes into making planets, moons, and other objects of a solar system.
The cloud fragments into smaller clouds and forms many stars at one time.
A supernova blows the cloud up and dissipates the majority of the gas.
One star forms at its center and blows the rest of the matter back into space.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The average star spends what percentage of its life in the protostar stage? a. 0.1% b. 5% c. 10% d. 50% e. 90%arrow_forwardWhy is iron significant to understanding how a supernova occurs? A. Iron is the heaviest of all atomic nuclei, and thus no heavier elements can be made. B. Supernovae often leave behind neutron stars, which are made mostly of iron. C. The fusion of iron into uranium is the reaction that drives a supernova explosion. D. Iron cannot release energy either by fission or fusion.arrow_forwardFor each statement concerning main sequence stars, select T True, F False, G Greater than, L Less than, or E Equal to. A) The surface temperature of a O type star is .... than a K type star. B) On the main sequence, the mass of a O type star is .... than a F type star. C) On the main sequence, a M type star's life is .... than a G type star. D) The surface temperature of our Sun is .... than the surface temperature of Sirius. E) When stars start hydrogen burning, thier mass determines where they are on the main sequence. F) Based on the relative lifes of M and G type stars we expect the number of M stars to be .... than the number of G type stars.arrow_forward
- The sun has a radius of 6.959 × 108 m and a surface temperature of 5.81 x 10° K. When the sun radiates at a rate of 3.91 x 1026 W and is a perfect emitter. What is the rate of energy emitted per square meter? Stefan-Boltzmann constant is 5.67 x 10-8 J/s-m2 K4 a) 5.6 x 107 W/m2 b) 12.8 x 107 W/m2 c) 6.4 x 107 W/m2 25.6 x 107 W/m2 5.6 x 1017 W/m2arrow_forwardThe mass-luminosity relation describes the mathematical relationship between luminosity and mass for main sequence stars. It describes how a star with a mass of 4 M⊙ would have a luminosity of ______ L⊙. If a star has a radius 1/2 that of the Sun and a temperature 4 that of the Sun, how many times higher is the star's luminosity than that of the Sun? (If it is smaller by a factor of 8, you would write 0.125 because 1/8=0.125) If a star has a radius 2 times larger than the Sun's and a luminosity 1/4th that of the Sun, how many times higher is the star's temperature than that of the Sun? (If it is smaller by a factor of 8, you would write 0.125 because 1/8=0.125) If a star has a surface temperature 2 times lower than the Sun's and a luminosity the same as the Sun, how many times larger is the star than the Sun? (If it is smaller by a factor of 8, you would write 0.125 because 1/8=0.125)arrow_forwardWhich statement is most logical? a Once gravity overcomes thermal pressure, nebulae cloud turns into molecular cloud. If it is cold and dense enough, molecular cloud might turn into protostar. b If gravity is stronger than thermal pressure, nebulae cloud contracts into molecular cloud. If it is cold and dense enough, molecular cloud might turn into protostar. c If a molecular cloud is cold and dense enough, it turns into a protostar. Once gravity overcomes thermal pressure, protostar might become molecular cloud. d If a nebulae cloud is cold and dense enough, it turns into molecular cloud. If gravity is stronger than thermal pressure, molecular cloud might become protostar.arrow_forward
- Assume that when a certain main sequence star becomes a giant gas, its luminosity increases from L to 1000 L and its radius also increases from R to 1000 R. If the initial surface temperature is T, what approximately is the final surface temperature? A. 0.032 T B. 0.18 T C. 0.0010 T D. 0.010 Tarrow_forwardAstronomers us the P-Cygni line features in a spectrum of a supernova to... Select one alternative: ...measure the velocity of the supernova ejecta. ...to measure the rotation speed of the star that exploded. ...measure the composition of the supernova ejecta more accurately than with other lines. ...to measure the mass of the neutron star or black hole formed in the supernova.arrow_forwardOne way to calculate the radius of a star is to use its luminosity and temperature and assume that the star radiates approximately like a blackbody. Astronomers have measured the characteristics of central stars of planetary nebulae and have found that a typical central star is 16 times as luminous and 20 times as hot (about 110,000 K) as the Sun. Find the radius in terms of the Sun’s. How does this radius compare with that of a typical white dwarf?arrow_forward
- Place the following events in the formation of stars in the proper chronological sequence, with the oldest first and the youngest last. w. the gas and dust in the nebula flatten to a disk shape due to gravity and a steadily increasing rate of angular rotation x. a star emerges when the mass is great enough and the temperature is high enough to trigger thermonuclear fusion in the core y. the rotation of the nebular cloud increases as gas and dust concentrates by gravity within the growing protostar in the center z. some force, perhaps from a nearby supernova, imparts a rotation to a nebular cloud y, then z, then w, then x z, then y, then w, then x w, then y, then z, then x z, then x, then w, then y x, then z, then y, then w MacBook Air on .H. O O O Oarrow_forwardD Question 9 Which of the following stages of stellar evolution creates and ejected balloon of material called a planetary nebula? O Hydrogen Fusion Multiple Shell Fusion. O Supernova O Hydrogen Shell Fusion O Helium Flash Hellum Fusion,arrow_forward1arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON