College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
For a main sequence star with luminosity L, how many kilograms of hydrogen is being converted into helium per second? Use the formula that you derive to estimate the mass of hydrogen atoms that are converted into helium in the interior of the sun (LSun = 3.9 x 1026 W).
(Note: the mass of a hydrogen atom is 1 mproton and the mass of a helium atom is 3.97 mproton. You need four hydrogen nuclei to form one helium nucleus.)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the lifetime on the main sequence of a star whose surface temperature is 6500° K and whose radius is 2 X 109 m ? ( LS=3.826 X 1026 J/s)arrow_forwardConsider the image above of the Cassiopeia A (Cas A) supernova remnant. The supernova explosion that caused this remnant was observed on earth about 300 years ago. It is about 3000 pc away. Since that time, the shockwave from the supernova has expanded to form the roughly spherical cloud pictured above. From the center point to the edge of the cloud is about 3 pc. Compute the angular diameter of the Cas A supernova remnant as viewed from Earth. Express your answer in arcminutes.arrow_forwardIn a star of 1 solar mass (M☉), the core hydrogen burning phase, also known as the main sequence phase, lasts for approximately 10 billion years. Suppose there's a star of 15 solar masses (M☉). Stars of higher mass burn through their hydrogen at a faster rate, following an approximate relation that the lifetime of a star on the main sequence (T) is proportional to its mass (M) raised to the power of -2.5 (T ∝ M^-2.5). Calculate approximately how long this 15 solar mass star would remain in the main sequence phase, compared to the 1 solar mass star.arrow_forward
- The mass-luminosity relation describes the mathematical relationship between luminosity and mass for main sequence stars. It describes how a star with a mass of 4 M⊙ would have a luminosity of ______ L⊙. If a star has a radius 1/2 that of the Sun and a temperature 4 that of the Sun, how many times higher is the star's luminosity than that of the Sun? (If it is smaller by a factor of 8, you would write 0.125 because 1/8=0.125) If a star has a radius 2 times larger than the Sun's and a luminosity 1/4th that of the Sun, how many times higher is the star's temperature than that of the Sun? (If it is smaller by a factor of 8, you would write 0.125 because 1/8=0.125) If a star has a surface temperature 2 times lower than the Sun's and a luminosity the same as the Sun, how many times larger is the star than the Sun? (If it is smaller by a factor of 8, you would write 0.125 because 1/8=0.125)arrow_forwardUse t = 1 M2.5 to compute the life expectancy of a 0.6-solar-mass star. (A solar lifetime is approximately 10 billion years.) yrWhy might this be an underestimate if the star is fully mixed by convection? a) If the star is fully mixed its mass will be much larger than 0.6 solar masses. b) If the star is fully mixed its mass will be much smaller than 0.6 solar masses. c) If the star is fully mixed it will be able to use a larger portion of its hydrogen in fusion than the Sun. d) If the star is fully mixed it will be able to use a smaller portion of its hydrogen in fusion than the Sun.arrow_forwardThe flux received at the Earth from Supernova 1885 was 3.0182 x 10 10 W/m². The luminosity of the supernova is 6 x 10° Lo (or 6 x 10° solar luminosities). What is the distance to the supernova in parsecs? Take 1 pc = 3.0857 x 1016 m and Lo= 3.828 x 1026 w. d = pcarrow_forward
- This star has a mass of 3.3 MSun. What is the main sequence lifetime of this star? You may assume that the lifetime of the sun is 1010 yr.arrow_forwardA certain star's power output is 2.9 x 1026 W. Assuming an ideal radiator with e = 1, calculate its radius in km if its temperature is 5,720 K. The Stefan-Boltzmann constant is 5.67 x 10-8 W/(m².K4). R = > _km 616,612 margin of error +/- 1%arrow_forwardQuestion 32 Consider three Main Sequence stars, an O tar, an F star and a K star, each with an apparent magnitude of 2. Which star is the most luminous? They're all the same luminosity. The O star The F star The K star Question 33 Consider three Main Sequence stars, an O star, an F star and a K star, each with an apparent magnitude of 2. Which star appears the brightest in the night sky? The O star The F star O The K star O They all appear the same. Please answer botharrow_forward
- A certain giant molecular cloud has a mass of 9.50 x 1035 kg, and 2.00 percent of its mass is converted into stars during a single encounter with a shock wave. How many stars can it make if you assume that the stars have an average the mass of 3.0 x 1030 kg?arrow_forwardFor the PP chain 0.7% of the mass participating in nuclear fusion is liberated as energy which produces a star's luminosity. Assume that the core of a main sequence star consists of 10% of its total mass. Hence, estimate the lifetime of a star on the main sequence in terms of its luminosity L/L. Give your answer in years. You may use the observed mass-luminosity relation L x M³.5, where M is the star's total mass. Using typical values, calculate estimates for the main sequence lifetime of a KO star and a 05 star. Describe briefly why your estimate might be more accurate for K stars compared to O stars.arrow_forwardIf an X-ray binary consists of a 10-solar-mass star and a neutron star orbiting each other every 20.8 days, what is their average separation? (Hints: Use the version of Kepler's third law for binary stars, M, + M3 = ; make sure you express quantities in units of AU, solar masses, and years. Assume the mass of the neutron star is 1.6 solar masses.) a3 AUarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON