College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
1. Suppose you observe a tight eclipsing binary with orbital period of 3 days, and radial velocity semi-amplitude for both components of 80 kilometers/second.
a. Without doing any calculation, you know that the mass ratio of the binary is 1:1. Explain why?
b. What are the masses and orbital radii of the two stars?
c. Suppose the binary is perfectly aligned so each eclipse the center of one star goes across the other. How often do you see an eclipse?
d. Suppose one eclipse lasts for 3.5 hours. What is the radius of the stars?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 4 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Which of the following WOULD NOT characterizes the type(s) of star we would find at g, m, n, o, and p on the Hertzsprung-Russel Diagram (Figure 4) a. are all smaller than q,i,h. b. fuse hydrogen into helium. c. are called, “the main sequence”. d. fuse He into heavier elements. e. get smaller towards the right sidearrow_forwardBased on what you know about main-sequence stars, select all of the correct statements from the following list. 1. Since the interiors of stars cannot be observed, there are no theories about their structure. 2. More massive stars are hotter and brighter. 3. The weight of a star must be balanced by internal pressure. 4. More massive stars live longer; they take longer to use up all their energy. 5. Stars change position on the main sequence throughout their lives. 6. Outward energy flow in a star is by conduction only.arrow_forwardA turnoff point corresponding to the youngest star cluster would occur at what spectral classification? a. B b. A c. F d. Garrow_forward
- How high or low a star is on the main sequence is dictated primarily by ... Select one: A. its chemical composition B. the fraction of metals in its atmosphere C. what elements are fusing in its core D. the size of its photosphere E. its massarrow_forwardWhich statement is most logical? a Once gravity overcomes thermal pressure, nebulae cloud turns into molecular cloud. If it is cold and dense enough, molecular cloud might turn into protostar. b If gravity is stronger than thermal pressure, nebulae cloud contracts into molecular cloud. If it is cold and dense enough, molecular cloud might turn into protostar. c If a molecular cloud is cold and dense enough, it turns into a protostar. Once gravity overcomes thermal pressure, protostar might become molecular cloud. d If a nebulae cloud is cold and dense enough, it turns into molecular cloud. If gravity is stronger than thermal pressure, molecular cloud might become protostar.arrow_forwardBased on what you learned about stellar evolution, select all of the correct statements from the following list. 1. The period of some Cepheid variables actually changes. 2. When getting dimmer, variable stars are releasing energy; when getting brighter they are storing energy. 3. variable stars are expanding and contracting 4. despite their variability, variable stars stay in a specific position on the H-R diagram. 5. A changing period in a Cepheid variable means that the size of the star is changing and that the star is therefore evolving. 6. Only stars on the instability strip are variable. 7. More massive stars will vary their brightness more quickly.arrow_forward
- Choose the statements that correctly describe the characteristics of the stars located in the labeled quadrants of the H-R diagram. Luminosityarrow_forward1arrow_forward14 Suppose you see two main-sequence stars of the same spectral type. Star 1 is dimmer in apparent brightness than Star 2 by a factor of 100. What can you conclude? (Neglect any effects that might be caused by interstellar dust and gas.) A B C D Star 1 is 10 times more distant than Star 2. The luminosity of Star 1 is a factor of 100 less than the luminosity of Star 2. Star 1 is 100 times nearer than Star 2. Star 1 is 100 times more distant than Star 2. E Without first knowing the distances to these stars, you cannot draw any conclusions about how their true luminosities compare to each other.arrow_forwardWhich of the following statements is wrong? A. A main-sequence star is cooler and brighter than it was as a protostar. B. Carbon fusion occurs in high-mass stars but not in low-mass stars because the cores of low-mass stars never contain significant amounts of carbon. C. when a main-sequence star exhausts its core hydrogen fuel supply, the core shrinks while the rest of the star expands. D. After a supernova explosion, the remains of the stellar core will be either a neutron star or a black hole.arrow_forwardWhich stars have the longest period of variability? a. RR Lyrae b. Type I (classical) Cepheids c. Type II Cepheids d. main-sequence stars e. All have the same period.arrow_forwardAn eclipsing binary will a. be more luminous than a visual binary. b. always be a spectroscopic binary. c. give off most of its light in the infrared. d. show a constant Doppler shift in its spectral lines. e. show two stars with variable proper motion.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON