Below is an image of the Krebs cycle: acetyl-CoA oxaloacetate COASH H20 NADH NAD* H20 malate citrate fumarate isocitrate FADH2 NAD* CO2 FAD АТР NADH 4 ADP succinate GTP NAD a-ketoglutarate H20 GDP NADH CO2 succinyl CoA - COASH COASH Consider the conversion of succinate to fumarate, which is coupled with the production the electron carrier FADH2. If this reaction was NOT coupled with the production of FADH2 (and only catalyzed the conversion of succinate to fumarate), how would this impact ATP production through cell respiration? ATP production would stop because no high energy electron carriers would be produced ATP production would still occur, but there would be a much lower ATP yield because a large number of electron carriers are no longer being made OATP production would stop because without FADH2 we will no longer have electrons moving through the electron transport chain ATP production would still occur, but there would be a slightly lower ATP yield because a small number of electron carriers are no longer being produced
Electron Transport Chain
The electron transport chain, also known as the electron transport system, is a group of proteins that transfer electrons through a membrane within mitochondria to create a gradient of protons that drives adenosine triphosphate (ATP)synthesis. The cell uses ATP as an energy source for metabolic processes and cellular functions. ETC involves series of reactions that convert redox energy from NADH (nicotinamide adenine dinucleotide (NAD) + hydrogen (H)) and FADH2(flavin adenine dinucleotide (FAD)) oxidation into proton-motive force(PMF), which is then used to synthesize ATP through conformational changes in the ATP synthase complex, a process known as oxidative phosphorylation.
Metabolism
Picture a campfire. It keeps the body warm on a cold night and provides light. To ensure that the fire keeps burning, fuel needs to be added(pieces of wood in this case). When a small piece is added, the fire burns bright for a bit and then dies down unless more wood is added. But, if too many pieces are placed at a time, the fire escalates and burns for a longer time, without actually burning away all the pieces that have been added. Many of them, especially the larger chunks or damp pieces, remain unburnt.
Cellular Respiration
Cellular respiration is the cellular process involved in the generation of adenosine triphosphate (ATP) molecules from the organic nutritional source obtained from the diet. It is a universal process observed in all types of life forms. The glucose (chemical formula C6H12O6) molecules are the preferred raw material for cell respiration as it possesses a simple structure and is highly efficient in nature.
Step by step
Solved in 2 steps