Human Anatomy & Physiology (11th Edition)
11th Edition
ISBN: 9780134580999
Author: Elaine N. Marieb, Katja N. Hoehn
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
At which point in the graph do voltage-gated potassium channels open? (Base your answer to this question on the graph below depicting an action potential.)
A
B
C
D
E
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.Similar questions
- You find a neuron whose resting potential is -90mV. Which of the following are likely to be true? (select all that apply) Voltage-gated sodium channels are closed The neuron is fully permeable to sodium The neuron is permeable to potassium The neuron is hyperpolarizedarrow_forwardB A C Match the action potential phase in the plot below with the correct image below showing the Na+/K+ ATPase and voltage-gated K+ and Na+ channels. +50- D -50- -70- 0 E A B M D + OUT -IN [Choose ] [Choose] [Choose] SHE - OUT IN + OUT INarrow_forwardWhat is the importance of the sodium-potassium pump in neuron function? What do you think would be the effect on action potentials if the sodium-potassium pump stopped functioning due to the lack of ATP?arrow_forward
- Show a complete circuit diagram of the model of the neuron using the specific numerical values for each component: potassium ion concentration outside: 4.0 mmol/L potassium ion concentration inside: 77.5 mmol/Larrow_forwardThe normal concentrations for intracellular and extracellular potassium in a neuron are [K+]in = 150 mM and [K+]out = 5 mM, respectively. Due to an electrolyte imbalance, a patient has the following intracellular and extracellular concentrations of potassium: [K+]in = 140 mM and [K+]out =2 mM. Using the Nernst equation (Chapter 4), calculate the equilibrium potential for potassium in the cells with normal K+ distributions and of the diseased patient. Refer back to Question #1. Will it be easier or more difficult to generate an action potential in the diseased neuron as compared to the normal neuron? Why?arrow_forwardSeparately, draw a table using arrows to depict the appropriate magnitude and direction of the forces and ion fluxes at different membrane potentials for a ligand-gated channel that is equally permeable to both ion X+ and ion Y+. The equilibrium potential for ion X+ is -60 mV, and the equilibrium potential for ion Y+ is -20 mV. Which item (a, b, c, or d) best represents the forces and fluxes for a membrane potential of +20 mV? Upwards arrows means outward direction and downwards arrow means inward direction. The length of the arrow determines the magnitude.arrow_forward
- What is the intracellular voltage for Cl- if the intracellular concentration was 5 mM and the extracellular concentration was 130 mM. Write the voltage as a number in mV inside the cell relative to that outside, eg. -72 or + 90. Question 2. What is the intracellular voltage for Ca++ if the intracellular concentration was 0.0008 mM and the extracellular concentration was 0.6 mM. Write the voltage as a number in mV inside the cell relative to that outside, eg. -72 or +90. Round to the nearest milli Volt.arrow_forwardWhat force(s) act(s) to move potassium ions from the inside of the cell to the outside when a neuron is about to enter the hyperpolarization phase of an action potential? O a) The sodium-potassium pump Ob) The electrical (electrostatic) gradient only Oc) The concentration (chemical) gradient only d) Both the concentration (chemical) gradient and the electrical (electrostatic) gradientarrow_forward13) Draw a graph representing the changes in membrane potential across the axonal membrane before, during, and after an action potential. On your graph, use a highlighter to clearly indicate for which portions of your graph the letter corresponding to each cellular event listed below belongs. List of cellular events: A) All K* channels open B) All Na* channels close C) The Na*/K* ATPase cotransporter transports Na* and K* across the membrane. D) All Na* channels open E) The threshold value of membrane potential is attained. F) All K* channels close G) Some Na* channels open Your graph:arrow_forward
- A membrane potential (Vm) labeled axis on the graph In the graph draw the phases of the action potential Include the channels involved and when they open and close matching them to the Vm Indicate the periods in which the action potential can or cannot occurarrow_forwardSeparately, draw a table using arrows to depict the appropriate magnitude and direction of the forces and ion fluxes at different membrane potentials for a ligand-gated channel that is equally permeable to both ion X+ and ion Y+. The equilibrium potential for ion X+ is -60 mV, and the equilibrium potential for ion Y+ is -20 mV. Which item best represents the forces and fluxes for a membrane potential of -40 mV (a, b, c, or d)? Upwards arrows means outward direction and downwards arrow means inward direction. The length of the arrow determines the magnitude.arrow_forwardBased on the graph, the threshold voltage appears to be approximately. (Base your answer to this question on the graph below depicting an action potential.) +60 mV. +30 mV. 0 mV. −30 mV. −60 mV.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Human Anatomy & Physiology (11th Edition)BiologyISBN:9780134580999Author:Elaine N. Marieb, Katja N. HoehnPublisher:PEARSONBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStaxAnatomy & PhysiologyBiologyISBN:9781259398629Author:McKinley, Michael P., O'loughlin, Valerie Dean, Bidle, Theresa StouterPublisher:Mcgraw Hill Education,
- Molecular Biology of the Cell (Sixth Edition)BiologyISBN:9780815344322Author:Bruce Alberts, Alexander D. Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter WalterPublisher:W. W. Norton & CompanyLaboratory Manual For Human Anatomy & PhysiologyBiologyISBN:9781260159363Author:Martin, Terry R., Prentice-craver, CynthiaPublisher:McGraw-Hill Publishing Co.Inquiry Into Life (16th Edition)BiologyISBN:9781260231700Author:Sylvia S. Mader, Michael WindelspechtPublisher:McGraw Hill Education
Human Anatomy & Physiology (11th Edition)
Biology
ISBN:9780134580999
Author:Elaine N. Marieb, Katja N. Hoehn
Publisher:PEARSON
Biology 2e
Biology
ISBN:9781947172517
Author:Matthew Douglas, Jung Choi, Mary Ann Clark
Publisher:OpenStax
Anatomy & Physiology
Biology
ISBN:9781259398629
Author:McKinley, Michael P., O'loughlin, Valerie Dean, Bidle, Theresa Stouter
Publisher:Mcgraw Hill Education,
Molecular Biology of the Cell (Sixth Edition)
Biology
ISBN:9780815344322
Author:Bruce Alberts, Alexander D. Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter Walter
Publisher:W. W. Norton & Company
Laboratory Manual For Human Anatomy & Physiology
Biology
ISBN:9781260159363
Author:Martin, Terry R., Prentice-craver, Cynthia
Publisher:McGraw-Hill Publishing Co.
Inquiry Into Life (16th Edition)
Biology
ISBN:9781260231700
Author:Sylvia S. Mader, Michael Windelspecht
Publisher:McGraw Hill Education