Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps with 7 images
Knowledge Booster
Similar questions
- a converging lens has a focal length of 4.5cm. it forms an inverted image with an image distance of 5.5cm what is the magnification?arrow_forwardOne side of a lens is convex with radius of curvature 30 cm. The other side is concave with radius of curvature 50 cm. The index of refraction of the lens is 1.6. What is the focal length of the lens? Group of answer choices 130 cm, converging 130 cm, diverging 31 cm, converging 31 cm, divergingarrow_forwardTwo lenses are mounted d = 39 cm apart on an optical bench. The focal length of the first lens is f1 = 9.8 cm and that of the second lens is f2 = 3.1 cm. An object of height ho = 4.9 cm is placed at a distance of do = 24 cm in front of the first lens. Now consider the two-lens system and the final image it forms, i.e., the image created by the second lens. What is the distance, in centimeters, between the object and its final image? D =?arrow_forward
- A student with normal sight is surprised to see a possum scampering up the rear wall in the Lyle theatre. The possum is 30.0 cm long and the wall is 2.3 m away. The student's eyeballs have a diameter of 2.4 cm. How big is the image of the possum on the student's retina? (Units: cm)arrow_forwardAn object of height 5.50 cm is placed 33.0 cm to the left of a converging lens with a focal length of 10.5 cm. Determine the image location in cm, the magnification, and the image height in cm. HINT (a) the image location in cm cm (b) the magnification (c) the image height in cm cm (d) Is the image real or virtual? O real virtual (e) Is the image upright or inverted? O upright O invertedarrow_forwardAn object is placed 27 cm in front of a diverging lens having a focal length of magnitude 50 cm. What is the image distance, in cm? Your answer needs to have 2 significant figures, including the negative sign in your answer if needed. Do not include the positive sign if the answer is positive. No unit is needed in your answer, it is already given in the question statement.arrow_forward
- You unconsciously estimate the distance to an object from the angle it subtends in your field of view. This angle 0 in radians is related to the linear height of the object h and to the distance d by 0= h/d. Assume that you are driving a car and that another car, 1.50 m high, is 22.0 m behind you. KTO & $3 m (d) What angle does the image subtend at your eyes? rad (e) Based on its angular size, how far away does the following car appear to be? m 0 1900 Per Works Inc OBJECTS IN MIRROR ARE CLOSER THAN THEY APPEAR vestest by Creators Syndicate The Far Side by Gary Larson 1985 FarWorks, Inc. All Rights Reserved. Used with permission. (a) Suppose your car has a flat passenger-side rearview mirror, 1.55 m from your eyes. How far from your eyes is the image of the car following you? m (b) What angle does the image subtend in your field of view? rad (c) Suppose instead your car has a convex rearview mirror (see figures) with a radius of curvature of magnitude 1.70 m. How far from your eyes is…arrow_forwardHomework 12 Problem 10: Two lenses are mounted d = 27 cm apart on an optical bench. The focal length of the first lens is f1 = 5.1 cm and that of the second lens is f2 = 4.4 cm. An object of height ho = 3.5 cm is placed at a distance of do = 21 cm in front of the first lens. Part (a) Ignoring the second lens for now, at what distance, in centimeters, behind the first lens is the object’s image formed by that lens? di = ______ Part (b) Calculate the magnification of that image, including its sign. m = ______ Part (c) Now consider the two-lens system and the final image it forms, i.e., the image created by the second lens. What is the distance, in centimeters, between the object and its final image? D = ______arrow_forwardThe projection lens in a certain slide projector is a single thin lens. A slide 23.0 mm high is to be projected so that its image fills a screen 1.90 m high. The slide-to-screen distance is 3.06 m. (Enter your answers to at least one decimal place.) (a) Determine the focal length of the projection lens. mm(b) How far from the slide should the lens of the projector be placed to form the image on the screen? mmarrow_forward
- A thin lens is comprised of two spherical surfaces with radii of curvatures of 32.4 cm for the front side and -26.9 cm for the back side. The material of which the lens is compose has an index of refraction of 1.49. What is the magnification of the image formed by an object placed 43.7cm from the lens?arrow_forwardTwo converging lenses are separated by 27.0 cm. The focal length of each lens is 13.0 cm. An object is placed 37.0 cm to the left of the lens that is on the left. Determine the final image distance relative to the lens on the right.arrow_forward
arrow_back_ios
arrow_forward_ios