College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A compound microscope is made with an objective lens (fo = 0.90 cm) and an eyepiece (fo = 1.1 cm). The lenses are separated by a distance of 10 cm. If an object is 1.0 cm in front of the objective lens, where will the final image of the eyepiece be located?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A thin lens is comprised of two spherical surfaces with radii of curvatures of 58.9 cm for the front side and -60 cm for the back side. The material of which the lens is composed has an index of refraction of 1.65. What is the magnification of the image formed by an object placed 33.4 cm from the lens?arrow_forwardYou have two lenses at your disposal, one with a focal length f1 = 44.0 cm, the other with a focal length f2 = -44.0 cm. If you want to produce an image of the bulb that is enlarged by a factor of 1.70, how far from the wall should the lens be placed? Express your answer with the appropriate units.arrow_forwardTwo converging lenses have the same focal length of 5.00 cm. They have a common principal axis and are separated by 29.5 cm. An object is located 10.0 cm to the left of the left-hand lens. What is the image distance (relative to the lens on the right) of the final image produced by this two-lens system? Final image distance = Number i Unitsarrow_forward
- A lens forms an image of an object. The object is 16 cm from the lens. The image is 12 cm from the lens on the same side as the object. (a) What is the focal length of the lens? (b) If the object is 8.5 mm tall, how tall is the image? Is it erect or inverted? (c) Draw a ray diagram.arrow_forwardYou are using a microscope with a 10× eyepiece. What focal length of the objective lens will give a total magnification of 200×? Assume a length L = 160 mm.arrow_forwardTwo lenses are mounted d = 39 cm apart on an optical bench. The focal length of the first lens is f1 = 9.8 cm and that of the second lens is f2 = 3.1 cm. An object of height ho = 4.9 cm is placed at a distance of do = 24 cm in front of the first lens. Now consider the two-lens system and the final image it forms, i.e., the image created by the second lens. What is the distance, in centimeters, between the object and its final image? D =?arrow_forward
- A compound lens system consists of two converging lenses, one at x=−20.0cm with focal length f1=+10.0cm, and the other at x=+20.0cm with focal length f2=+8.00cm. (Figure 1) An object 1.00cm tall is placed at x=−50.0cm. (A) What is the location of the final image produced by the compound lens system? Give the x coordinate of the image. Express your answer in centimeters, to three significant figures or as a fraction.arrow_forwardYou want to purchase a microscope for doing surgeries, which requires that there is at least 10cm distance between the objective lens and the patient. The objective forms a highly magnified real image of the object at a distance L. You want the image to look 50 times larger. What should be focal lengths of the objective and the eye piece assuming L=200mmarrow_forwardThe distance between the eyepiece and the objective lens in a certain compound microscope is 19.0 cm. The focal length of the eyepiece is 2.45 cm and that of the objective is 0.395 cm. What is the overall magnification of the microscope? dditiarrow_forward
- A transparent photographic slide is placed in front of a converging lens with a focal length of 2.20 cm. An image of the slide is formed 14.5 cm from the slide. (a) How far is the lens from the slide if the image is real? (b) How far is the lens from the slide if the image is virtual? Step 1 (a) The real image case is shown in the ray diagram. or Object 1 Figure 1 + P 14.5 cm P Notice that here p + q = 14.5 cm, or q = 14.5 cm - p. The thin-lens equation, with focal length f = 2.20 cm, gives 1 - p² (14.5 cm)p+ p+q = F Description Image | cm² = 0. Using the quadratic formula to solve the above equation gives two solutions. The smaller solution is p= cm and the larger solution is p = cm cm. Both are valid solutions for the real image case.arrow_forwardConsider a converging lens with focal length 7.05 cm. The distance between an object and a real image of the object created by the lens is 50.5 cm. Find the distance between the object and the lens if the lens is closer to the object than it is to the image. Answer in cm.arrow_forwardAn object is placed to the left of a lens, and a real image is formed to the right of the lens. The image is inverted relative to the object and is one-half the size of the object. The distance between the object and the image is 73.0 cm. (a) How far from the lens is the object? (b) What is the focal length of the lens? (a) do = (b) f=arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON