A cylinder containing ideal gas is sealed by a piston that is above the gas. The piston is a cylindrical object, with a weight of 22.0 N, which can slide up or down in the cylinder without friction. The inner radius of the cylinder, and the radius of the piston, is 8.00 cm. The top of the piston is exposed to the atmosphere, and the atmospheric pressure is 101.3 kPa. The cylinder has a height of 30.0 cm, and, when the temperature of the gas is 20°C, the bottom of the piston is 11.0 cm above the bottom of the cylinder. (A) Find the number of moles of ideal gas in the cylinder. (B) Heat is added, gradually raising the temperature of the gas to 160°C. Calculate the distance between the bottom of the cylinder and the bottom of the piston when the piston comes to its new equilibrium position.
Viscosity
The measure of the resistance of a fluid to flow is known as viscosity. Most fluids have some resistance to motion, the resistance provided by the fluid is called viscosity. This resistance is created by the force of attraction between the fluid molecules. If you pour water through a funnel, it flows easily and quickly, because it has very little resistance. But if you pour honey through a funnel, it may take a little time longer, as the density of honey is high.
Poiseuille's Law
The law of Poiseuille or Poiseuille's equation states that the pressure drop of an incompressible fluid especially a liquid in a laminar flow that passes through a cylindrical tube of length L, radius r, pressure gradient ΔP, and mainly depends on the viscosity of the fluid is nothing but the pressure difference of the layers of fluids. ΔP=P1-P2
Drag Forces
Forces that occur due to the movement of fluid are known as fluid mechanics. Following are the fluids present:
A cylinder containing ideal gas is sealed by a piston that is above the gas. The piston is a cylindrical object, with a weight of 22.0 N, which can slide up or down in the cylinder without friction. The inner radius of the cylinder, and the radius of the piston, is 8.00 cm. The top of the piston is exposed to the atmosphere, and the atmospheric pressure is 101.3 kPa. The cylinder has a height of 30.0 cm, and, when the temperature of the gas is 20°C, the bottom of the piston is 11.0 cm above the bottom of the cylinder. (A) Find the number of moles of ideal gas in the cylinder. (B) Heat is added, gradually raising the temperature of the gas to 160°C. Calculate the distance between the bottom of the cylinder and the bottom of the piston when the piston comes to its new equilibrium position.
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images