A certain rigid aluminum container contains a liquid at a gauge pressure equal to P0 = 2.02 × 105 Pa at sea level where the atmospheric pressure Pa = 1.01 × 105 Pa. The volume of the container is V0 = 2.9 × 10-4 m3. The maximum difference between the pressure inside and outside the container that this particular container can withstand before bursting or imploding is ΔP = 2.43 × 105 Pa.For this problem, assume that the density of air maintains a constant value of ρa = 1.20 kg / m3 and that the density of seawater maintains a constant value of ρs = 1025 kg / m3. ΔP = 2.43 × 105 PaV0 = 2.9 × 10-4 m3 a)The container is taken from sea level, where the pressure of air is Pa = 1.01 × 105 Pa, to a higher altitude. What is the maximum height h in meters above the ground that the container can be lifted before bursting? Neglect the changes in temperature and acceleration due to gravity with altitude.  b)What is the maximum depth h in meters below the surface of the ocean that the container can be taken before imploding?

Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Katz, Debora M.
Chapter15: Fluids
Section: Chapter Questions
Problem 18PQ
icon
Related questions
icon
Concept explainers
Question

A certain rigid aluminum container contains a liquid at a gauge pressure equal to P0 = 2.02 × 105 Pa at sea level where the atmospheric pressure Pa = 1.01 × 105 Pa. The volume of the container is V0 = 2.9 × 10-4 m3. The maximum difference between the pressure inside and outside the container that this particular container can withstand before bursting or imploding is ΔP = 2.43 × 105 Pa.

For this problem, assume that the density of air maintains a constant value of ρa = 1.20 kg / m3 and that the density of seawater maintains a constant value of ρs = 1025 kg / m3.

ΔP = 2.43 × 105 Pa
V0 = 2.9 × 10-4 m3

a)The container is taken from sea level, where the pressure of air is Pa = 1.01 × 105 Pa, to a higher altitude. What is the maximum height h in meters above the ground that the container can be lifted before bursting? Neglect the changes in temperature and acceleration due to gravity with altitude. 

b)What is the maximum depth h in meters below the surface of the ocean that the container can be taken before imploding? 

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Viscosity
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers with Modern …
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning