
An ideal gas (which is is a hypothetical gas that conforms to the laws governing gas behavior) confined to a container with a massless piston at the top. A massless wire is attached to the piston. When an external pressure of 2.00 atmatm is applied to the wire, the gas compresses from 5.40 to 2.70 LL . When the external pressure is increased to 2.50 atmatm, the gas further compresses from 2.70 to 2.16 LL .
In a separate experiment with the same initial conditions, a pressure of 2.50 atmatm was applied to the ideal gas, decreasing its volume from 5.40 to 2.16 LL in one step.
If the final temperature was the same for both processes, what is the difference between qqq for the two-step process and qqq for the one-step process in joules?

Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 3 images

- The gas law for an ideal gas at absolute temperature T (in kelvins), pressure P (in atmospheres), and volume V (in liters) is PV = nRT, where n is the number of moles of the gas and R = 0.0821 is the gas constant. Suppose that, at a certain instant, P = 9.0 atm and is increasing at a rate of 0.15 atm/min and V = 13 L and is decreasing at a rate of 0.17 L/min. Find the rate of change of T with respect to time at that instant if n = 10 mol. (Round your answer to four decimal places.) dT=0.512 dt X K/minarrow_forwardn = 3.8 moles of an ideal gas are pumped into a chamber of volume V= (0.083 m³. The initial pressure of the gas is 1.01 × 10° Pa (about 1 atm). What is the initial temperature, in kelvin, of the gas? T = The pressure of the gas is increased ten times. Now what is the temperature, in kelvin, of the gas? T =arrow_forwardConsider two containers with the same volume and temperature. The first container is labelled "Dry" and holds "dry" air = a ratio of nitrogen (N2) and oxygen (O2). The second container is labelled "Humid" and holds "moist" air = the SAME ratio of nitrogen and oxygen, but also contains water (H2O) vapor. According to the ideal gas law, if the pressures are equal, the weight of the gas inside the "Dry" container will bearrow_forward
- The volume of an ideal gas is held constant. Determine the ratio P2/P1 of the final pressure to the initial pressure when the temperature of the gas rises (a) from 47 to 94 K and (b) from 25.8 to 62.4 oC.arrow_forwardA large cylindrical tank contains 0.760 m3 of nitrogen gas at 20.0 ∘C and 1.45×105 Pa (absolute pressure). The tank has a tight-fitting piston that allows the volume to be changed. What will be the pressure if the volume is decreased to 0.410 m3 and the temperature is increased to 159 ∘C? Express your answer in pascals.arrow_forwardProblem 5: n = 3.9 moles of an ideal gas are pumped into a chamber of volume V = 0.094 m3. Part (a) The initial pressure of the gas is 1 atm. What is the initial temperature (in K) of the gas? 50% Part (b) The pressure of the gas is increased to 10 atm. Now what is the temperature (in K) of the gas?arrow_forward
- 15.01 A cylindrical tank has a tight-fitting piston that allows the volume of the tank to be changed. The tank originally contains 0.100 m3m3 of air at a pressure of 3.10 atm. The piston is slowly pulled out until the volume of the gas is increased to 0.390 m3 . If the temperature remains constant, what is the final value of the pressure? Express your answer in atmospheres.arrow_forwardThe gas law for an ideal gas at absolute temperature T (in kelvins), pressure P (in atmospheres), and volume V (in liters) is PV = nRT, where n is the number of moles of the gas and R = 0.0821 is the gas constant. Suppose that, at a certain instant, P = 7.0 atm and is increasing at a rate of 0.15 atm/min and V = 13 and is decreasing at a rate of 0.17 L/min. Find the rate of change of T with respect to time (in K/min) at that instant if n = 10 mol.(Round your answer to four decimal places.)arrow_forwardAn ideal gas is held in a non-rigid container that is kept at a constant temperature (295 K). The pressure on the container is reduced from 50 Pa to 30 Pa. If the initial volume of the gas was 0.75 m3, what is the final volume?arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON





