College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Topic Video
Question
A clock pendulum oscillates at a frequency of 2.5 Hz . At t=0, it is released from rest starting at an angle of 14 ∘∘ to the vertical.
Ignoring friction, what will be the position (angle in radians) of the pendulum at t_2 = 2.00 s ?
Ignoring friction, what will be the position (angle in radians) of the pendulum at t_3 = 540 s ?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Note: Make sure your calculator is in radian mode for this problem, and that you switch it back after this problem. There are two particles (1 and 2) that are moving around in space. The force that particle 2 exerts on 1 is given by: F→21(t)=Fxe−(t/T)ı^+Fysin(2πt/T)ȷ^ Where the parameters have the values: Fx=14.2 N, Fy=89 N, T=55 s.We will consider a time interval that begins at ti=0 s and ends at tf=96 s. Find the x component of the impulse from 2 on 1 between ti and tf.arrow_forwardProblem 1: A meter stick has mass m = .2 kg (distributed uniformly along its length) and a length of (of course) 1 meter. The stick is placed simultaneously on two weight scales: one at the 20 cm mark (with 0 cm at the far left end of the stick), the other at the 70 cm mark, with no other supports or weights. Remember that a weight scale supplies an upward force, equal to the reading on the scale. Calculate the reading on both scales. Call the reading on the left scale (at 20 cm) FL, and the reading on the right scale (at 70 cm) FR. 20 cm 70 cmarrow_forwardThe frame is made from uniform rod which has a mass p per unit length. A smooth recessed slot constrains the small rollers at A and B to travel horizontally. Force P is applied to the frame through a cable attached to an adjustable collar C. Determine the magnitudes and directions of the normal forces which act on the rollers if (a) h = 0.24L, (b) h = 0.50L, and (c) h = 0.91L. The forces will be positive if up, negative if down. Evaluate your results for p = 1.8 kg /m, L = 575 mm, and P = 48 N. What is the acceleration of the frame in each case? (a) Answers: (b) L (c) A h = 0.24L: h = 0.50L: h = 0.91L: L A = A A = B i i i P B N₁ B N, B N, i i N₁ª N,9 N₁9 i i m/s m/s m/sarrow_forward
- I have been stuck on this question for a while. I broke it down into parts and solved for velocity but I think I am doing something wrong.arrow_forwardPlease Asaparrow_forwardConsider a disc of mass 0.44kg, with radius 0.5 m on a slope with angle 45 degrees to the horizontal. It has a good grip on the slope and does not slip. The disc is constructed so that its mass per unit area, ρ(r) = r1/2 kg m−2, with r being the radial distance in metres from the axis of the disc. What is the acceleration of the disc down the slope?arrow_forward
- A 0.900 kg rock is tied to a string and whirled in a vertical circle with a 0.85 m radius and a frequency of rotation of 1.6 Hz. Assuming a constant velocity, determine the tension in the rope at the bottom of the circle. Round up your answer to the correct number of significant digits.arrow_forwardCan you help? I am stuck! Two simple pendulums of equal length l = 0.45 m are suspended from the same point. The pendulum bobs are small solid steel spheres. The first bob is drawn back to make a 35° angle with the vertical, while the other one is left hanging at rest. If the first bob has a mass of 0.25 kg and the second has a mass of 0.54 kg, how high will the second bob rise above its initial position when struck elastically by the first bob after it is released?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON