Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN: 9781259696527
Author: J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 5 steps with 10 images
Knowledge Booster
Similar questions
- Q2. Consider a fuel which is an equimolar mixture (1 mole each) of propane (C3Hs) and methane (CH4). (a) Write the complete stoichiometric combustion reaction for this fuel with air (b) Determine the stoichiometric A/F ratio of this fuel (C) Estimate the maximum flame temperature using average specific heat cp at 1200 K. Assume the boiler using this fuel operates at 1 atm and the reactants enter at 298 K. AH(C3H8) -103,847 kJ/kmol. AHCHA)-74,831 kJ/kmol AH (H20) =-241,847 kJ/kmol, AH'r(co2) - 393,546 kJ/kmol, CP120-43.87 kJ/kmol.K Cpco2 = 56.20 kJ/kmol.K. Cps2 = 33.71 kJ/kmol.Karrow_forwardOne of the ways that benzene is produced on a large scale is the hydrodealkylation of toluene. C,H,CH; + H, C,H, + CH4 A stream of toluene is mixed with a recycle stream and enters a reactor along with a stream of pure hydrogen. The reaction products at 550 °C enter a condenser, where they are cooled to 41.0 °C. A vapor stream containing Y5CH, = 0.600 mol CH,/mol leaves the process, and a liquid stream containing x66 = 0.810 mol benzene/mol and x6 = 0.190 mol toluene/mol enters a distillation column. The distillate of the column leaves the process at n7 = 668.0 mol/h and contains y7h = 0.9000 mol benzene/mol and y7 = 0.1000 mol toluene/mol. The bottoms of the column contains X8b = 0.250 mol benzene/mol and xgt = 0.750 mol toluene/mol and is recycled back to the fresh feed. Hydrogen is fed into the process at ni = 1183 mol H,/h. This process is carried out at 760 mmHg. A n, mol/h mol H/mol YSH2 YSCH, mol CH_/mol Ysh mol b/mol Ys mol t/mol n̟ mol/h n, mol/h Condenser Улн, тol H/mol Усн,…arrow_forward3. Kindly answer this and show your solution.arrow_forward
- Aniline is produced by the hydrogenation of nitrobenzene. A small amount of cyclohexylamine is produced as a by-product. Nitrobenzene is fed to the reactor as a vapor with three times the required stoichiometric amount of hydrogen. The conversion of nitrobenzene to the products is 96% and the selectivity to aniline is 85%. Unreacted hydrogen is separated from the reaction products and recycled to the reactor. From the recycle line it is purged to keep the inerts in the recycle stream below 5%. The fresh hydrogen that is fed is 99.5% pure and the rest is inert. Calculate the adiabatic outlet temperature of the reaction products and indicate the relationship with respect to the reference temperature (298.15) (in K):arrow_forwardCalculate the amount of heat required to pass through each section of the graph. Here are the heat capacities and phase change enthalpies of water. ΔHfus or enthalpy of fusion or the first phase change from solid to liquid ΔHfus = 6.01kJ/mol ΔHvap or enthalpy of vaporization or the second phase change from liquid to gas ΔHvap = 40.7kJ/mol cliquid water or specific heat of water in the liquid phase cliquid water = 4.184J/g℃ cice or specific heat of water in the solid phase cice = 2.108J/g℃ cwater vapor or the specific heat of water in the gas phase cwater vapor= 1.996J/g℃arrow_forwardMaterial and energy balancearrow_forward
- Professor Modyn's steady state flow reactor is now fed acetylene (C₂H₂) at 2.000 mol/s. The acetylene is combusted with 45.00% excess dry air to form CO2 and H2O. Limitations within the reactor only allow 82.00% of the acetylene to react. Both the acetylene and air enter the reactor at 25 °C, and the products leave the reactor at 1027.00 °C. Potentially useful properties are listed in the following table. Species Ahr(298 K), kJ/mol Cp, kJ/kmol-K 02 0 3.5R N₂ 0 3.5R C₂H₂ -226.73 4R CO2 H₂O(g) -393.5 4R -241.82 5R Determine the exiting flow rate of 02. 5.945 exiting flow rate: Determine the heat interaction term. -2085.37 mol/s heat interaction term: kWarrow_forwardA fuel is prepared by mixing 4 moles of argon (Ar, inert) with 12 moles of ethane (C2H6) and 6moles of propane (C3H8) and undergoes complete combustion in air according to the followingreactions:C2H6 + 7/2 O2 reacts to form 2 CO2 + 3 H2OC3H8 + 5 O2 reacts to form 3 CO2 + 4 H2OAir may be considered as 21 mol% oxygen (O2) and 79 mol% Nitrogen (N2).The average molecular mass of a mixture can be calculated as Maverage = Σ xi Mi where xi and Mi are molefraction and molecular mass of component i. Atomic masses: C = 12; O = 16; H = 1; N = 14; Ar = 40.Calculate:a. the theoretical air required to burn the fuel (in kg air per kg fuel) b. the mole fraction of CO2 on a wet basis in the flue gas if the fuel is burned with 30% excess air,assuming complete combustionarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The