
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Two dimensions. In the figure, three point particles are fixed in place in an xy plane. Particle A has mass mA = 5 g, particle B has mass 2.00mA, and particle C has mass 3.00mA. A fourth particle D, with mass 4.00mA, is to be placed near the other three particles. What (a) x coordinate and (b) y coordinate should particle D be placed so that the net gravitational force on particle A from particles B, C, and D is zero (d = 18 cm)?

Transcribed Image Text:1.5d
-x-
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 5 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Please answer parts a-carrow_forwardOne model for a certain planet has a core of radius R and mass M surrounded by an outer shell of inner radius R, outer radius 2R, and mass 4M. If M = 4.07 × 1024 kg and R = 5.79 x 106 m, what is the gravitational acceleration of a particle at points (a) R and (b) 3R from the center of the planet? (a) Number i Units (b) Number i Unitsarrow_forwardThree electrons are located at the vertices of an equilateral triangle with side lengths of d. The electrons at the base of the triangle are stuck in place but the electron at the top is free to move. The mass of an electron is 9.109 *10-31 kg. a) Find the distance d such that the electron located at the top or apex of the triangle is balanced by the repulsive forces of the electrons below it and the gravitational force pulling it down.arrow_forward
- A hydrogen molecule consists of two hydrogen atoms whose nuclei are single protons. Find the magnitude of the repulsive force between the two protons in a hydrogen molecule whose distance apart is 7.50x10-11 m. (You may enter your result using scientific notation.)arrow_forwardIn the figure below, three point particles are fixed in place in an xy plane. Particle A has mass mA, particle B has mass 2.35mA, and particle C has mass 3.45mA. A fourth particle D, with mass 4.40mA, is to be placed near the other three particles. In terms of distance d, at what coordinates should particle D be placed so that the net gravitational force on particle A from particles B, C, and D is zero? (a) C 1.5d x coordinate d (b) y coordinate Bo A d xarrow_forwardOne of your summer lunar space camp activities is to launch a 1090 kg rocket from the surface of the Moon. You are a serious space camper and you launch a serious rocket: it reaches an altitude of 227 km. What gain in gravitational potential energy does the launch accomplish? The mass and radius of the Moon are 7.36×10^22 kg and 1740 km, respectively.arrow_forward
- Two books are on a shelf 1.3 m from one another. Book A has a mass of 2.2 kg. Book B hasa mass of 1.7 kg. An absentminded student picks up book A to see if it is useful for his re-search paper. He decides not to use the book and sets it on a shelf 1.8 m from book B.What effect does this have on the gravitational force between the books?AThe gravitational force remains the same because the masses of the books remainconstant.BThe gravitational force decreases because the distance between the books increases.The gravitational force increases because the distance between the books increases.DThe gravitational force remains the same because distance does not affect gravity for small objectsarrow_forwardA mass m is suspended from a massless spring of natural length 90 cm with the spring constant k = 10 Nm and causes the spring to extend by 7.9 cm. Assuming the gravitational field strength g = 9.8 ms², calculate the value of the mass on the spring. Give your answer in Sl units. Answer: Choose... +arrow_forwardOne of your summer lunar space camp activities is to launch a 1210-kg rocket from the surface of the Moon. You are a serious space camper and you launch a serious rocket: it reaches an altitude of 229 km. What gain in gravitational potential energy does the launch accomplish? The mass and radius of the Moon are 7.36 × 1022 kg and 1740 km, respectively.arrow_forward
- Three point particles are fixed in position in an xy plane. Two of them, particle A of mass 5 g and particle B of mass 11 g, are shown in the figure with a separation of dAB = 0.579 m at angle = 30°. Particle C, with mass 8 g, is not shown. The net gravitational force acting on particle A due to particles B and C is 2.02 x 10-¹4 N at an angle of -163.8��. from the positive x axis. What are (a) the x coordinate and (b) the y coordinate of particle C? B dAB 0 Aarrow_forwardTwo spheres of mass M1 = 710 kg and M2 = 370 kg are placed 4.60 m apart. A particle of mass m = 16.0 kg is now placed midway between the two spheres. (a) What is the net gravitational force on the particle due to the two spheres? N toward the sphere of M1, M2? (b) At what position between the two spheres should the particle be placed so that the net gravitational force on the particle is zero? m from the sphere of mass M1arrow_forwardThe drawing shows three particles far away from any other objects and located on a straight line. The masses of these particles are ma = 346 kg, mB = 520 kg, and mc = 129 kg. Take the positive direction to be to the right. Find the net gravitational force, including sign, acting on (a) particle A, (b) particle B, and (c) particle C. 0.500 m B 0.250 marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON